Moron Maps and subspaces of N* extending PFA

Alan Dow

Department of Mathematics University of North Carolina Charlotte

winter school 2010

▲□▶▲□▶▲□▶▲□▶ □ のQ@

III. not PFA

Velickovic defined a poset P_2 by $p \in P_2$ is a map with no fixed points and $p^2 = p$; henceforth, let $\iota^n = [2^n, 2^{n+1})$

 $p: \iota^n \mapsto \iota^n$ and $\limsup |\iota^n \setminus dom(p)|$ is infinite.

Velickovic defined a poset P_2 by $p \in P_2$ is a map with no fixed points and $p^2 = p$; henceforth, let $\iota^n = [2^n, 2^{n+1})$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $p: \iota^n \mapsto \iota^n$ and $\limsup |\iota^n \setminus dom(p)|$ is infinite.

 P_2 is ordered by \supset^* (i.e. p < q if $p \supset^* q$)

Velickovic defined a poset P_2 by $p \in P_2$ is a map with no fixed points and $p^2 = p$; henceforth, let $\iota^n = [2^n, 2^{n+1})$

 $p: \iota^n \mapsto \iota^n$ and $\limsup |\iota^n \setminus dom(p)|$ is infinite.

 P_2 is ordered by \supset^* (i.e. p < q if $p \supset^* q$)

set $a_p = \{i : i < p(i)\}$ and $b_p = \{i : p(i) < i\}$ ($p(a_p) = b_p$).

A D F A 同 F A E F A E F A Q A

Velickovic defined a poset P_2 by $p \in P_2$ is a map with no fixed points and $p^2 = p$; henceforth, let $\iota^n = [2^n, 2^{n+1})$

 $p: \iota^n \mapsto \iota^n$ and $\limsup |\iota^n \setminus dom(p)|$ is infinite.

 P_2 is ordered by \supset^* (i.e. p < q if $p \supset^* q$)

set $a_p = \{i : i < p(i)\}$ and $b_p = \{i : p(i) < i\}$ ($p(a_p) = b_p$).

If $G \subset P_2$ is generic, then $x = \{\mathbb{N} \setminus dom(p) : p \in G\}$ is an ultrafilter on \mathbb{N} , and $\langle x, x \rangle \cup \bigcup p^*$ is an autohomeomorphism on \mathbb{N}^* with unique fixed point x.

A D F A 同 F A E F A E F A Q A

Velickovic defined a poset P_2 by $p \in P_2$ is a map with no fixed points and $p^2 = p$; henceforth, let $\iota^n = [2^n, 2^{n+1})$

 $p: \iota^n \mapsto \iota^n$ and $\limsup |\iota^n \setminus dom(p)|$ is infinite.

 P_2 is ordered by \supset^* (i.e. p < q if $p \supset^* q$)

set $a_p = \{i : i < p(i)\}$ and $b_p = \{i : p(i) < i\}$ ($p(a_p) = b_p$).

If $G \subset P_2$ is generic, then $x = \{\mathbb{N} \setminus dom(p) : p \in G\}$ is an ultrafilter on \mathbb{N} , and $\langle x, x \rangle \cup \bigcup p^*$ is an autohomeomorphism on \mathbb{N}^* with unique fixed point x.

Of course, x is a propeller point: $A \oplus_x B$ where $A = \{x\} \cup \bigcup_{p \in G} a_p^*$ and $B = \{x\} \cup \bigcup_{p \in G} b_p^*$.

Velickovic defined a poset P_2 by $p \in P_2$ is a map with no fixed points and $p^2 = p$; henceforth, let $\iota^n = [2^n, 2^{n+1})$

 $p: \iota^n \mapsto \iota^n$ and $\limsup |\iota^n \setminus dom(p)|$ is infinite.

 P_2 is ordered by \supset^* (i.e. p < q if $p \supset^* q$)

set $a_p = \{i : i < p(i)\}$ and $b_p = \{i : p(i) < i\}$ ($p(a_p) = b_p$).

If $G \subset P_2$ is generic, then $x = \{\mathbb{N} \setminus dom(p) : p \in G\}$ is an ultrafilter on \mathbb{N} , and $\langle x, x \rangle \cup \bigcup p^*$ is an autohomeomorphism on \mathbb{N}^* with unique fixed point x.

Of course, x is a propeller point: $A \oplus_x B$ where $A = \{x\} \cup \bigcup_{p \in G} a_p^*$ and $B = \{x\} \cup \bigcup_{p \in G} b_p^*$.

Question 1 could such a point be selective?

III. not PFA

2-to-1 image which is not \mathbb{N}^* ?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

A minor modification, $P_{2,2}$, is to add two (or finitely many) ultrafilters, a minor change

lim sup $|\iota^{2n} \setminus dom(p)|$ and lim sup $|\iota^{2n+1} \setminus dom(p)|$ are both required to be infinite (same as $P_2 \times P_2$).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

A minor modification, $P_{2,2}$, is to add two (or finitely many) ultrafilters, a minor change

lim sup $|\iota^{2n} \setminus dom(p)|$ and lim sup $|\iota^{2n+1} \setminus dom(p)|$ are both required to be infinite (same as $P_2 \times P_2$).

(日) (日) (日) (日) (日) (日) (日)

Let $E = \bigcup_n \iota^{2n}$ and $O = \mathbb{N} \setminus E$

A minor modification, $P_{2,2}$, is to add two (or finitely many) ultrafilters, a minor change

lim sup $|\iota^{2n} \setminus dom(p)|$ and lim sup $|\iota^{2n+1} \setminus dom(p)|$ are both required to be infinite (same as $P_2 \times P_2$).

Let $E = \bigcup_n \iota^{2n}$ and $O = \mathbb{N} \setminus E$

We get x_1 with the base $\{E \setminus dom(p) : p \in G\}$ and x_2 has the base $\{O \setminus dom(p) : p \in G\}$

(日) (日) (日) (日) (日) (日) (日)

A minor modification, $P_{2,2}$, is to add two (or finitely many) ultrafilters, a minor change

lim sup $|\iota^{2n} \setminus dom(p)|$ and lim sup $|\iota^{2n+1} \setminus dom(p)|$ are both required to be infinite (same as $P_2 \times P_2$).

Let $E = \bigcup_n \iota^{2n}$ and $O = \mathbb{N} \setminus E$

We get x_1 with the base $\{E \setminus dom(p) : p \in G\}$ and x_2 has the base $\{O \setminus dom(p) : p \in G\}$

(ロ) (同) (三) (三) (三) (○) (○)

So $E^* \approx A_1 \oplus_{x_1} B_1$ and $O^* \approx A_2 \oplus_{x_2} B_2$

A minor modification, $P_{2,2}$, is to add two (or finitely many) ultrafilters, a minor change

lim sup $|\iota^{2n} \setminus dom(p)|$ and lim sup $|\iota^{2n+1} \setminus dom(p)|$ are both required to be infinite (same as $P_2 \times P_2$).

Let
$$E = \bigcup_n \iota^{2n}$$
 and $O = \mathbb{N} \setminus E$

We get x_1 with the base $\{E \setminus dom(p) : p \in G\}$ and x_2 has the base $\{O \setminus dom(p) : p \in G\}$

(日) (日) (日) (日) (日) (日) (日)

So $E^* \approx A_1 \oplus_{x_1} B_1$ and $O^* \approx A_2 \oplus_{x_2} B_2$

ask: is $A_1 \oplus_{x_2}^{x_1} B_2 \not\approx \mathbb{N}^*$

A minor modification, $P_{2,2}$, is to add two (or finitely many) ultrafilters, a minor change

lim sup $|\iota^{2n} \setminus dom(p)|$ and lim sup $|\iota^{2n+1} \setminus dom(p)|$ are both required to be infinite (same as $P_2 \times P_2$).

Let
$$E = \bigcup_n \iota^{2n}$$
 and $O = \mathbb{N} \setminus E$

We get x_1 with the base $\{E \setminus dom(p) : p \in G\}$ and x_2 has the base $\{O \setminus dom(p) : p \in G\}$

(ロ) (同) (三) (三) (三) (○) (○)

So
$$E^* \approx A_1 \oplus_{x_1} B_1$$
 and $O^* \approx A_2 \oplus_{x_2} B_2$

ask: is $A_1 \oplus_{x_2}^{x_1} B_2 \not\approx \mathbb{N}^*$

I (and others) knew long ago that this was true BUT !!

A minor modification, $P_{2,2}$, is to add two (or finitely many) ultrafilters, a minor change

lim sup $|\iota^{2n} \setminus dom(p)|$ and lim sup $|\iota^{2n+1} \setminus dom(p)|$ are both required to be infinite (same as $P_2 \times P_2$).

Let
$$E = \bigcup_n \iota^{2n}$$
 and $O = \mathbb{N} \setminus E$

We get x_1 with the base $\{E \setminus dom(p) : p \in G\}$ and x_2 has the base $\{O \setminus dom(p) : p \in G\}$

So
$$E^* \approx A_1 \oplus_{x_1} B_1$$
 and $O^* \approx A_2 \oplus_{x_2} B_2$

ask: is $A_1 \oplus_{x_2}^{x_1} B_2 \not\approx \mathbb{N}^*$

I (and others) knew long ago that this was true BUT!! I had to learn all these methods better

(ロ) (同) (三) (三) (三) (○) (○)

 $p \in P_4$ (replacing ι^n by $[4^n, 4^{n+1})$) by keeping everything else the same except requiring that each $i \in dom(p)$ has an orbit of size 4.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 $p \in P_4$ (replacing ι^n by $[4^n, 4^{n+1})$) by keeping everything else the same except requiring that each $i \in dom(p)$ has an orbit of size 4.

Force with $P_2 \times P_4$ to again get x_1 and x_4 ; but x_4 would be a 4-point but still can define $A_2 \oplus_{x_4} B_2$ but each of these would be split as well $A_2 = A_{2,1} \oplus_{x_4} A_{2,2}$ and $B_2 = B_{2,1} \oplus_{x_4} B_{2,2}$ and $A_1 \oplus B_2$ would then be a 3-point

(日) (日) (日) (日) (日) (日) (日)

 $p \in P_4$ (replacing ι^n by $[4^n, 4^{n+1})$) by keeping everything else the same except requiring that each $i \in dom(p)$ has an orbit of size 4.

Force with $P_2 \times P_4$ to again get x_1 and x_4 ; but x_4 would be a 4-point but still can define $A_2 \oplus_{x_4} B_2$ but each of these would be split as well $A_2 = A_{2,1} \oplus_{x_4} A_{2,2}$ and $B_2 = B_{2,1} \oplus_{x_4} B_{2,2}$ and $A_1 \oplus B_2$ would then be a 3-point

and "everyone knows" that $P_2 \times P_4$ would not add a 3-point to \mathbb{N}^* and so this would be a much more instructive example of a 2-to-1 image which was not homeomorphic to \mathbb{N}^* .

 $p \in P_4$ (replacing ι^n by $[4^n, 4^{n+1})$) by keeping everything else the same except requiring that each $i \in dom(p)$ has an orbit of size 4.

Force with $P_2 \times P_4$ to again get x_1 and x_4 ; but x_4 would be a 4-point but still can define $A_2 \oplus_{x_4} B_2$ but each of these would be split as well $A_2 = A_{2,1} \oplus_{x_4} A_{2,2}$ and $B_2 = B_{2,1} \oplus_{x_4} B_{2,2}$ and $A_1 \oplus B_2$ would then be a 3-point

and "everyone knows" that $P_2 \times P_4$ would not add a 3-point to \mathbb{N}^* and so this would be a much more instructive example of a 2-to-1 image which was not homeomorphic to \mathbb{N}^* .

although, P_3 does add a 4-point

We are progressing from two papers:

We are progressing from two papers:

[Shelah-Steprans] Force with P_2 over PFA then there is a non-trivial automorphism but each automorphism is somewhere trivial.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

We are progressing from two papers:

[Shelah-Steprans] Force with P_2 over PFA then there is a non-trivial automorphism but each automorphism is somewhere trivial.

[Steprans] Force over PFA with P_2^{κ} (countable support product), then the number of automorphisms is κ^{ω} (which can be less than 2^c).

(ロ) (同) (三) (三) (三) (○) (○)

We are progressing from two papers:

[Shelah-Steprans] Force with P_2 over PFA then there is a non-trivial automorphism but each automorphism is somewhere trivial.

[Steprans] Force over PFA with P_2^{κ} (countable support product), then the number of automorphisms is κ^{ω} (which can be less than 2^c).

I was intrigued by the quote: P_2 adds an automorphism "while doing as little else as possible".

III. not PFA

Two other modifications

 $p \in P_0$ if $p : \mathit{dom}(p) \mapsto 2$

 $p \in P_0 \text{ if } p : \textit{dom}(p) \mapsto 2$

and $p \in P_1$ if $p : dom(p) \mapsto 2$; $|p^{-1}(1) \cap \iota^n| \le 1$ for all *n*, and $\liminf\{|\iota^n \setminus dom(p)| : p^{-1}(1) \cap \iota^n = \emptyset\}$ is infinite.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $p \in P_0$ if $p : dom(p) \mapsto 2$

and $p \in P_1$ if $p : dom(p) \mapsto 2$; $|p^{-1}(1) \cap \iota^n| \le 1$ for all *n*, and $\liminf\{|\iota^n \setminus dom(p)| : p^{-1}(1) \cap \iota^n = \emptyset\}$ is infinite.

(ロ) (同) (三) (三) (三) (○) (○)

force over PFA results (and more questions)

 $p \in P_0 \text{ if } p : \textit{dom}(p) \mapsto 2$

and $p \in P_1$ if $p : dom(p) \mapsto 2$; $|p^{-1}(1) \cap \iota^n| \le 1$ for all *n*, and $\liminf\{|\iota^n \setminus dom(p)| : p^{-1}(1) \cap \iota^n = \emptyset\}$ is infinite.

force over PFA results (and more questions)

with P_1 : there is an embedding of \mathbb{N}^* as a regular closed set $A \subset \mathbb{N}^*$ with a single point as the boundary. (indeed, simply $\{x\} \cup \bigcup_{p \in G} (p^{-1}(1))^*$)

 $p \in P_0$ if $p : dom(p) \mapsto 2$

and $p \in P_1$ if $p : dom(p) \mapsto 2$; $|p^{-1}(1) \cap \iota^n| \le 1$ for all *n*, and $\liminf\{|\iota^n \setminus dom(p)| : p^{-1}(1) \cap \iota^n = \emptyset\}$ is infinite.

force over PFA results (and more questions)

with P_1 : there is an embedding of \mathbb{N}^* as a regular closed set $A \subset \mathbb{N}^*$ with a single point as the boundary. (indeed, simply $\{x\} \cup \bigcup_{p \in G} (p^{-1}(1))^*$)

with P_0 , P_1 gives models in which automorphisms are trivial.

 $p \in P_0$ if $p : dom(p) \mapsto 2$

and $p \in P_1$ if $p : dom(p) \mapsto 2$; $|p^{-1}(1) \cap \iota^n| \le 1$ for all *n*, and $\liminf\{|\iota^n \setminus dom(p)| : p^{-1}(1) \cap \iota^n = \emptyset\}$ is infinite.

force over PFA results (and more questions)

with P_1 : there is an embedding of \mathbb{N}^* as a regular closed set $A \subset \mathbb{N}^*$ with a single point as the boundary. (indeed, simply $\{x\} \cup \bigcup_{p \in G} (p^{-1}(1))^*$)

with P_0 , P_1 gives models in which automorphisms are trivial.

all variants gives $triv(\Phi)$ is a ccc over fin P_{ω_2} -ideal

 $p \in P_0$ if $p : dom(p) \mapsto 2$

and $p \in P_1$ if $p : dom(p) \mapsto 2$; $|p^{-1}(1) \cap \iota^n| \le 1$ for all *n*, and $\liminf\{|\iota^n \setminus dom(p)| : p^{-1}(1) \cap \iota^n = \emptyset\}$ is infinite.

force over PFA results (and more questions)

with P_1 : there is an embedding of \mathbb{N}^* as a regular closed set $A \subset \mathbb{N}^*$ with a single point as the boundary. (indeed, simply $\{x\} \cup \bigcup_{p \in G} (p^{-1}(1))^*$)

with P_0 , P_1 gives models in which automorphisms are trivial.

all variants gives $triv(\Phi)$ is a ccc over fin P_{ω_2} -ideal

Conjecture: all automorphisms are FINITE over fin.

 $p \in P_0$ if $p : dom(p) \mapsto 2$

and $p \in P_1$ if $p : dom(p) \mapsto 2$; $|p^{-1}(1) \cap \iota^n| \le 1$ for all *n*, and $\liminf\{|\iota^n \setminus dom(p)| : p^{-1}(1) \cap \iota^n = \emptyset\}$ is infinite.

force over PFA results (and more questions)

with P_1 : there is an embedding of \mathbb{N}^* as a regular closed set $A \subset \mathbb{N}^*$ with a single point as the boundary. (indeed, simply $\{x\} \cup \bigcup_{p \in G} (p^{-1}(1))^*$)

with P_0 , P_1 gives models in which automorphisms are trivial.

all variants gives $triv(\Phi)$ is a ccc over fin P_{ω_2} -ideal

Conjecture: all automorphisms are FINITE over fin.

Questions galore: e.g. force with P_2 , is every 2-point RK-equivalent to the generic x?

III. not PFA

PFA creates conditions in the poset

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

PFA creates conditions in the poset

A natural fusion process goes something like this:

PFA creates conditions in the poset

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

A natural fusion process goes something like this:

Define $p <_{k,n} q$ (for $n, k \in \omega$) if $p \supset q$ and for each $j \le k$, $p \upharpoonright \iota^j = q \upharpoonright \iota^j$ and $|\iota^k \setminus dom(q)| > n$

PFA creates conditions in the poset

A natural fusion process goes something like this:

Define $p <_{k,n} q$ (for $n, k \in \omega$) if $p \supset q$ and for each $j \le k$, $p \upharpoonright \iota^j = q \upharpoonright \iota^j$ and $|\iota^k \setminus dom(q)| > n$

For a sequence $\{p_n, k_n\}_n$ such that $p_{n+1} <_{k_n,n} p_n$, getting p_{n+1} deciding max possible! then $\bigcup_n p_n \upharpoonright \max(\iota^{k_n})$ is in the poset.

PFA creates conditions in the poset

A natural fusion process goes something like this:

Define $p <_{k,n} q$ (for $n, k \in \omega$) if $p \supset q$ and for each $j \le k$, $p \upharpoonright \iota^j = q \upharpoonright \iota^j$ and $|\iota^k \setminus dom(q)| > n$

For a sequence $\{p_n, k_n\}_n$ such that $p_{n+1} <_{k_n,n} p_n$, getting p_{n+1} deciding max possible! then $\bigcup_n p_n \upharpoonright \max(\iota^{k_n})$ is in the poset.

So it follows easily that \mathbb{P} is \aleph_1 -closed and does not add subsets of \mathbb{N} (just new ultrafilters and maps on \mathbb{N}).

PFA creates conditions in the poset

A natural fusion process goes something like this:

Define $p <_{k,n} q$ (for $n, k \in \omega$) if $p \supset q$ and for each $j \le k$, $p \upharpoonright \iota^j = q \upharpoonright \iota^j$ and $|\iota^k \setminus dom(q)| > n$

For a sequence $\{p_n, k_n\}_n$ such that $p_{n+1} <_{k_n,n} p_n$, getting p_{n+1} deciding max possible! then $\bigcup_n p_n \upharpoonright \max(\iota^{k_n})$ is in the poset.

So it follows easily that \mathbb{P} is \aleph_1 -closed and does not add subsets of \mathbb{N} (just new ultrafilters and maps on \mathbb{N}).

We will use the Shelah-Steprans technique for producing new elements of \mathbb{P} (representing one of the posets described above). It uses the CH trick.

the poset $\mathbb{P}(\mathcal{F})$ and CH trick

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Let $H \subset {}^{<\omega_1}2$ be a generic filter (so no change to \mathbb{P}) and then let \mathcal{F} be a generic filter for \mathbb{P} (or use \diamond to construct, so it's in V[H]).

Let $H \subset {}^{<\omega_1}2$ be a generic filter (so no change to \mathbb{P}) and then let \mathcal{F} be a generic filter for \mathbb{P} (or use \diamond to construct, so it's in V[H]).

Now we let $\mathbb{P}(\mathcal{F})$ simply be the collection $\mathcal{F} \subset \mathbb{P}$ ordered by \supset (true inclusion); we'll start using *f*, *g* to refer to its elements.

(日) (日) (日) (日) (日) (日) (日)

Let $H \subset {}^{<\omega_1}2$ be a generic filter (so no change to \mathbb{P}) and then let \mathcal{F} be a generic filter for \mathbb{P} (or use \diamond to construct, so it's in V[H]).

Now we let $\mathbb{P}(\mathcal{F})$ simply be the collection $\mathcal{F} \subset \mathbb{P}$ ordered by \supset (true inclusion); we'll start using *f*, *g* to refer to its elements.

E.G. Let $M \prec H(\theta)$ be a countable elementary submodel and $\dot{h} \subset \omega \times \omega \times \mathbb{P}$ (a potential name for a member of ω^{ω}).

(ロ) (同) (三) (三) (三) (○) (○)

Let $H \subset {}^{<\omega_1}2$ be a generic filter (so no change to \mathbb{P}) and then let \mathcal{F} be a generic filter for \mathbb{P} (or use \diamond to construct, so it's in V[H]).

Now we let $\mathbb{P}(\mathcal{F})$ simply be the collection $\mathcal{F} \subset \mathbb{P}$ ordered by \supset (true inclusion); we'll start using *f*, *g* to refer to its elements.

E.G. Let $M \prec H(\theta)$ be a countable elementary submodel and $\dot{h} \subset \omega \times \omega \times \mathbb{P}$ (a potential name for a member of ω^{ω}). There is an $f \in \mathbb{P}$ and $h \in \omega^{\omega}$ so that

 $f \Vdash_{\mathbb{P}} f$ is $(M, \mathbb{P}(\mathcal{F}))$ -generic

(日) (日) (日) (日) (日) (日) (日)

and $f \Vdash_{\mathbb{P}(\mathcal{F})}$ if $\dot{h} \in \omega^{\omega}$, then $\dot{h} < \check{h}$

Let $H \subset {}^{<\omega_1}2$ be a generic filter (so no change to \mathbb{P}) and then let \mathcal{F} be a generic filter for \mathbb{P} (or use \diamond to construct, so it's in V[H]).

Now we let $\mathbb{P}(\mathcal{F})$ simply be the collection $\mathcal{F} \subset \mathbb{P}$ ordered by \supset (true inclusion); we'll start using *f*, *g* to refer to its elements.

E.G. Let $M \prec H(\theta)$ be a countable elementary submodel and $\dot{h} \subset \omega \times \omega \times \mathbb{P}$ (a potential name for a member of ω^{ω}). There is an $f \in \mathbb{P}$ and $h \in \omega^{\omega}$ so that

 $f \Vdash_{\mathbb{P}} f$ is $(M, \mathbb{P}(\mathcal{F}))$ -generic

and $f \Vdash_{\mathbb{P}(\mathcal{F})}$ if $\dot{h} \in \omega^{\omega}$, then $\dot{h} < \check{h}$

or, if \dot{h} is a code for a dense G_{δ} in \mathbb{R} , then there can be an r such that $f \Vdash r \in [\dot{h}]$

$\Vdash \mathbb{P}(\mathcal{F})$ is ω^{ω} -bounding and preserves category

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

$\Vdash \mathbb{P}(\mathcal{F})$ is ω^{ω} -bounding and preserves category

It's a simple matter to force an $I \subset \mathbb{N}$ so that $\limsup |\iota^n \setminus I|$ is infinite, and $I \supset^* dom(f)$ for all $f \in \mathcal{F}$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

$\Vdash \mathbb{P}(\mathcal{F})$ is ω^{ω} -bounding and preserves category

It's a simple matter to force an $I \subset \mathbb{N}$ so that $\limsup |\iota^n \setminus I|$ is infinite, and $I \supset^* dom(f)$ for all $f \in \mathcal{F}$. Thus, if $\mathcal{F}_G \subset \mathcal{F}$ is $\mathbb{P}(\mathcal{F})$ -generic, $p_{\mathcal{F}} = \bigcup \{f \upharpoonright I : f \in \mathcal{F}_G\}$ is a special member of \mathbb{P} .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

It's a simple matter to force an $I \subset \mathbb{N}$ so that $\limsup |\iota^n \setminus I|$ is infinite, and $I \supset^* dom(f)$ for all $f \in \mathcal{F}$. Thus, if $\mathcal{F}_G \subset \mathcal{F}$ is $\mathbb{P}(\mathcal{F})$ -generic, $p_{\mathcal{F}} = \bigcup \{f \upharpoonright I : f \in \mathcal{F}_G\}$ is a special member of \mathbb{P} .

How special? For any prescribed family \mathcal{D} of $< \aleph_2$ dense open subsets of \mathbb{P} , $p_{\mathcal{F}} \in \bigcap \mathcal{D}$ (and whatever else we can make it force)

It's a simple matter to force an $I \subset \mathbb{N}$ so that $\limsup |\iota^n \setminus I|$ is infinite, and $I \supset^* dom(f)$ for all $f \in \mathcal{F}$. Thus, if $\mathcal{F}_G \subset \mathcal{F}$ is $\mathbb{P}(\mathcal{F})$ -generic, $p_{\mathcal{F}} = \bigcup \{f \upharpoonright I : f \in \mathcal{F}_G\}$ is a special member of \mathbb{P} .

How special? For any prescribed family \mathcal{D} of $< \aleph_2$ dense open subsets of \mathbb{P} , $p_{\mathcal{F}} \in \bigcap \mathcal{D}$ (and whatever else we can make it force)

A D F A 同 F A E F A E F A Q A

Thus \mathbb{P} is \aleph_2 -distributive (preserves MA(ω_1) and cardinals).

It's a simple matter to force an $I \subset \mathbb{N}$ so that $\limsup |\iota^n \setminus I|$ is infinite, and $I \supset^* dom(f)$ for all $f \in \mathcal{F}$. Thus, if $\mathcal{F}_G \subset \mathcal{F}$ is $\mathbb{P}(\mathcal{F})$ -generic, $p_{\mathcal{F}} = \bigcup \{f \upharpoonright I : f \in \mathcal{F}_G\}$ is a special member of \mathbb{P} .

How special? For any prescribed family \mathcal{D} of $< \aleph_2$ dense open subsets of \mathbb{P} , $p_{\mathcal{F}} \in \bigcap \mathcal{D}$ (and whatever else we can make it force)

Thus \mathbb{P} is \aleph_2 -distributive (preserves MA(ω_1) and cardinals).

This shows that MA $+\neg$ CH does not imply all automorphisms are trivial.

It's a simple matter to force an $I \subset \mathbb{N}$ so that $\limsup |\iota^n \setminus I|$ is infinite, and $I \supset^* dom(f)$ for all $f \in \mathcal{F}$. Thus, if $\mathcal{F}_G \subset \mathcal{F}$ is $\mathbb{P}(\mathcal{F})$ -generic, $p_{\mathcal{F}} = \bigcup \{f \upharpoonright I : f \in \mathcal{F}_G\}$ is a special member of \mathbb{P} .

How special? For any prescribed family \mathcal{D} of $< \aleph_2$ dense open subsets of \mathbb{P} , $p_{\mathcal{F}} \in \bigcap \mathcal{D}$ (and whatever else we can make it force)

Thus \mathbb{P} is \aleph_2 -distributive (preserves MA(ω_1) and cardinals).

This shows that MA $+\neg$ CH does not imply all automorphisms are trivial.

Question 2 Does MA $+\neg$ CH imply $\mathcal{P}(\mathbb{N})$ is not c-universal?

sample preservation of PFA theorems

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

 $\mathbb{P} = P_2$ preserves that there are no (ω_1, ω_2)-gaps.

 $\mathbb{P} = P_2$ preserves that there are no (ω_1, ω_2)-gaps.

but it adds an (ω_2, ω_2) -gap

(ロ) (同) (三) (三) (三) (○) (○)

 $\mathbb{P} = P_2$ preserves that there are no (ω_1, ω_2) -gaps.

Let $\{\dot{c}_{\alpha} : \alpha \in \omega_1\}$ and $\{\dot{d}_{\beta} : \beta \in \omega_2\}$ be the names

 $\mathbb{P} = P_2$ preserves that there are no (ω_1, ω_2) -gaps.

Let $\{\dot{c}_{\alpha} : \alpha \in \omega_1\}$ and $\{\dot{d}_{\beta} : \beta \in \omega_2\}$ be the names

We can assume there is $f_0 \in \mathcal{F}$ such that f_0 forces a value c_{α} on \dot{c}_{α} for all $\alpha \in \omega_1$.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

 $\mathbb{P} = P_2$ preserves that there are no (ω_1, ω_2) -gaps.

Let $\{\dot{c}_{\alpha} : \alpha \in \omega_1\}$ and $\{\dot{d}_{\beta} : \beta \in \omega_2\}$ be the names

We can assume there is $f_0 \in \mathcal{F}$ such that f_0 forces a value c_{α} on \dot{c}_{α} for all $\alpha \in \omega_1$.

Pass to the extension V[H] and note that $\{c_{\alpha} : \alpha \in \omega_1\}$ and $\{d_{\beta} : \beta \in \lambda = \check{\omega}_2\}$ is a gap (where $d_{\beta} = val_{\mathcal{F}} d_{\beta}$).

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

 $\mathbb{P} = P_2$ preserves that there are no (ω_1, ω_2) -gaps.

Let $\{\dot{c}_{\alpha} : \alpha \in \omega_1\}$ and $\{\dot{d}_{\beta} : \beta \in \omega_2\}$ be the names

We can assume there is $f_0 \in \mathcal{F}$ such that f_0 forces a value c_{α} on \dot{c}_{α} for all $\alpha \in \omega_1$.

Pass to the extension V[H] and note that $\{c_{\alpha} : \alpha \in \omega_1\}$ and $\{d_{\beta} : \beta \in \lambda = \check{\omega}_2\}$ is a gap (where $d_{\beta} = val_{\mathcal{F}} d_{\beta}$).

As we know, there is a proper poset *Q* which will freeze this gap.

 $\mathbb{P} = P_2$ preserves that there are no (ω_1, ω_2) -gaps.

Let $\{\dot{c}_{\alpha} : \alpha \in \omega_1\}$ and $\{\dot{d}_{\beta} : \beta \in \omega_2\}$ be the names

We can assume there is $f_0 \in \mathcal{F}$ such that f_0 forces a value c_{α} on \dot{c}_{α} for all $\alpha \in \omega_1$.

Pass to the extension V[H] and note that $\{c_{\alpha} : \alpha \in \omega_1\}$ and $\{d_{\beta} : \beta \in \lambda = \check{\omega}_2\}$ is a gap (where $d_{\beta} = val_{\mathcal{F}} d_{\beta}$).

As we know, there is a proper poset Q which will freeze this gap. Meeting ω_1 many dense sets of ${}^{<\omega_1}2 * \mathbb{P} * Q$ will choose the \mathcal{F} and produce a frozen gap: $\{c_{\alpha}, d_{\beta} : \alpha, \beta \in \omega_1 \times \lambda\}$.

 $\mathbb{P} = P_2$ preserves that there are no (ω_1, ω_2) -gaps.

Let $\{\dot{c}_{\alpha} : \alpha \in \omega_1\}$ and $\{\dot{d}_{\beta} : \beta \in \omega_2\}$ be the names

We can assume there is $f_0 \in \mathcal{F}$ such that f_0 forces a value c_{α} on \dot{c}_{α} for all $\alpha \in \omega_1$.

Pass to the extension V[H] and note that $\{c_{\alpha} : \alpha \in \omega_1\}$ and $\{d_{\beta} : \beta \in \lambda = \check{\omega}_2\}$ is a gap (where $d_{\beta} = val_{\mathcal{F}} d_{\beta}$).

As we know, there is a proper poset Q which will freeze this gap. Meeting ω_1 many dense sets of ${}^{<\omega_1}2 * \mathbb{P} * Q$ will choose the \mathcal{F} and produce a frozen gap: { $c_{\alpha}, d_{\beta} : \alpha, \beta \in \omega_1 \times \lambda$ }. So IF there was a $p_{\mathcal{F}}$ for that collection \mathcal{F} , then we have that it forces there is no d_{λ} . But Q might force that $\mathbb{P}(\mathcal{F})$ is not proper.

Thus, the method requires us to work in the model we get after forcing with $\mathbb{P}(\mathcal{F})$.

Thus, the method requires us to work in the model we get after forcing with $\mathbb{P}(\mathcal{F})$. e.g. Let \mathcal{I} be a P-ideal.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Thus, the method requires us to work in the model we get after forcing with $\mathbb{P}(\mathcal{F})$. e.g. Let \mathcal{I} be a P-ideal.

(ロ) (同) (三) (三) (三) (○) (○)

For each $\mathbb{P}(\mathcal{F})$ -name $\dot{h} \in \mathbb{N}^{\mathbb{N}}$ and gap $\mathcal{I} \perp \mathcal{J}$

Thus, the method requires us to work in the model we get after forcing with $\mathbb{P}(\mathcal{F})$. e.g. Let \mathcal{I} be a P-ideal.

(ロ) (同) (三) (三) (三) (○) (○)

For each $\mathbb{P}(\mathcal{F})$ -name $\dot{h} \in \mathbb{N}^{\mathbb{N}}$ and gap $\mathcal{I} \perp \mathcal{J}$ there are $\{n_k\} \nearrow, I, J \in \mathcal{I} \times \mathcal{J}$ and $f \in \mathcal{F}$ such that

Thus, the method requires us to work in the model we get after forcing with $\mathbb{P}(\mathcal{F})$. e.g. Let \mathcal{I} be a P-ideal.

(ロ) (同) (三) (三) (三) (○) (○)

For each $\mathbb{P}(\mathcal{F})$ -name $\dot{h} \in \mathbb{N}^{\mathbb{N}}$ and gap $\mathcal{I} \perp \mathcal{J}$ there are $\{n_k\} \nearrow, I, J \in \mathcal{I} \times \mathcal{J}$ and $f \in \mathcal{F}$ such that either

Thus, the method requires us to work in the model we get after forcing with $\mathbb{P}(\mathcal{F})$. e.g. Let \mathcal{I} be a P-ideal.

(日) (日) (日) (日) (日) (日) (日)

For each $\mathbb{P}(\mathcal{F})$ -name $\dot{h} \in \mathbb{N}^{\mathbb{N}}$ and gap $\mathcal{I} \perp \mathcal{J}$ there are $\{n_k\} \nearrow, I, J \in \mathcal{I} \times \mathcal{J}$ and $f \in \mathcal{F}$ such that either 1. $f \Vdash_{\mathbb{P}(\mathcal{F})} \dot{h} \upharpoonright \bigcup \{[n_k, n_{k+1}) \cap (I \cup J) : k \in K\} \notin V$ for each infinite $K \subset \omega$ (since $2^{n_k} << n_{k+1}$) or

Thus, the method requires us to work in the model we get after forcing with $\mathbb{P}(\mathcal{F})$. e.g. Let \mathcal{I} be a P-ideal.

For each $\mathbb{P}(\mathcal{F})$ -name $\dot{h} \in \mathbb{N}^{\mathbb{N}}$ and gap $\mathcal{I} \perp \mathcal{J}$ there are $\{n_k\} \nearrow, I, J \in \mathcal{I} \times \mathcal{J}$ and $f \in \mathcal{F}$ such that either

- 1. $f \Vdash_{\mathbb{P}(\mathcal{F})} \dot{h} \upharpoonright \bigcup \{ [n_k, n_{k+1}) \cap (I \cup J) : k \in K \} \notin V$ for each infinite $K \subset \omega$ (since $2^{n_k} \ll n_{k+1}$) or
- 2. for each $i \in [n_k, n_{k+1})$ and each g < f such that g forces a value on $\dot{h}(i)$, $f \cup (g \upharpoonright [n_k, n_{k+1}))$ also forces a value on $\dot{h}(i)$ (with a single $\emptyset \neq \iota^{m_k} \subset [n_k, n_{k+1}) \setminus dom(f)$)

(日) (日) (日) (日) (日) (日) (日)

Thus, the method requires us to work in the model we get after forcing with $\mathbb{P}(\mathcal{F})$. e.g. Let \mathcal{I} be a P-ideal.

For each $\mathbb{P}(\mathcal{F})$ -name $\dot{h} \in \mathbb{N}^{\mathbb{N}}$ and gap $\mathcal{I} \perp \mathcal{J}$ there are $\{n_k\} \nearrow, I, J \in \mathcal{I} \times \mathcal{J}$ and $f \in \mathcal{F}$ such that either

- 1. $f \Vdash_{\mathbb{P}(\mathcal{F})} \dot{h} \upharpoonright \bigcup \{ [n_k, n_{k+1}) \cap (I \cup J) : k \in K \} \notin V$ for each infinite $K \subset \omega$ (since $2^{n_k} \ll n_{k+1}$) or
- 2. for each $i \in [n_k, n_{k+1})$ and each g < f such that g forces a value on $\dot{h}(i)$, $f \cup (g \upharpoonright [n_k, n_{k+1}))$ also forces a value on $\dot{h}(i)$ (with a single $\emptyset \neq \iota^{m_k} \subset [n_k, n_{k+1}) \setminus dom(f)$)

Apply to gaps: obviously Case 1 implies that $\dot{h}^{-1}(0)$ does not split the gap. But similarly with Case 2 because ...

$\{c_{\alpha}, d_{\beta} : \alpha \in \omega_1, \beta \in \omega_2\}$ not a gap

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

otherwise

$\{c_{\alpha}, d_{\beta} : \alpha \in \omega_1, \beta \in \omega_2\}$ not a gap

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

otherwise $Y = \{i : (\exists g < f) \ g \Vdash \dot{h}(i) \neq 0\}$ is in V and will contain each $J \in \mathcal{J}$,

$\{c_{\alpha}, d_{\beta} : \alpha \in \omega_1, \beta \in \omega_2\}$ not a gap

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

otherwise $Y = \{i : (\exists g < f) \ g \Vdash \dot{h}(i) \neq 0\}$ is in *V* and will contain each $J \in \mathcal{J}$, and so meet *I* for some $I \in \mathcal{I}$.

$\{c_{\alpha}, d_{\beta} : \alpha \in \omega_1, \beta \in \omega_2\}$ not a gap

otherwise $Y = \{i : (\exists g < f) \ g \Vdash \dot{h}(i) \neq 0\}$ is in *V* and will contain each $J \in \mathcal{J}$, and so meet *I* for some $I \in \mathcal{I}$.

Therefore there is an infinite $K \subset \omega$ such that for each $k \in K$ there is an $i_k \in Y \cap I \cap [n_k, n_{k+1})$.

A D F A 同 F A E F A E F A Q A

$\{c_{\alpha}, d_{\beta} : \alpha \in \omega_1, \beta \in \omega_2\}$ not a gap

otherwise $Y = \{i : (\exists g < f) \ g \Vdash h(i) \neq 0\}$ is in *V* and will contain each $J \in \mathcal{J}$, and so meet *I* for some $I \in \mathcal{I}$.

Therefore there is an infinite $K \subset \omega$ such that for each $k \in K$ there is an $i_k \in Y \cap I \cap [n_k, n_{k+1})$. For each $k \in K$, choose $f \subset g_k \Vdash \dot{h}(i_k) \neq 0$ and set $\overline{f} = f \cup \bigcup_{k \in K} g_k \upharpoonright [n_k, n_{k+1})$ $(\overline{f} \in \mathbb{P}$ by simply shrinking K).

$\{c_{\alpha}, d_{\beta} : \alpha \in \omega_1, \beta \in \omega_2\}$ not a gap

otherwise $Y = \{i : (\exists g < f) \ g \Vdash h(i) \neq 0\}$ is in *V* and will contain each $J \in \mathcal{J}$, and so meet *I* for some $I \in \mathcal{I}$.

Therefore there is an infinite $K \subset \omega$ such that for each $k \in K$ there is an $i_k \in Y \cap I \cap [n_k, n_{k+1})$. For each $k \in K$, choose $f \subset g_k \Vdash \dot{h}(i_k) \neq 0$ and set $\bar{f} = f \cup \bigcup_{k \in K} g_k \upharpoonright [n_k, n_{k+1})$ $(\bar{f} \in \mathbb{P}$ by simply shrinking K).

Thus! after forcing with $\mathbb{P}(\mathcal{F})$, we then select proper poset Q to freeze the gap,

$\{c_{\alpha}, d_{\beta} : \alpha \in \omega_1, \beta \in \omega_2\}$ not a gap

otherwise $Y = \{i : (\exists g < f) \ g \Vdash h(i) \neq 0\}$ is in *V* and will contain each $J \in \mathcal{J}$, and so meet *I* for some $I \in \mathcal{I}$.

Therefore there is an infinite $K \subset \omega$ such that for each $k \in K$ there is an $i_k \in Y \cap I \cap [n_k, n_{k+1})$. For each $k \in K$, choose $f \subset g_k \Vdash \dot{h}(i_k) \neq 0$ and set $\bar{f} = f \cup \bigcup_{k \in K} g_k \upharpoonright [n_k, n_{k+1})$ $(\bar{f} \in \mathbb{P}$ by simply shrinking K).

Thus! after forcing with $\mathbb{P}(\mathcal{F})$, we then select proper poset Q to freeze the gap, then force with the nice σ -centered poset to get $p_{\mathcal{F}}$ which forces that $\{c_{\alpha} : \alpha \in \omega_1\}$ and $\{d_{\beta} : \beta \in \lambda\}$ is a gap (and so d_{λ} can't exist).

III. not PFA

What Steprans did in V[H]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

For the remainder, assume that Φ is the valuation by \mathcal{F} of a \mathbb{P} -name of a lifting of an automorphism on $\mathcal{P}(\mathbb{N})$.

For the remainder, assume that Φ is the valuation by \mathcal{F} of a \mathbb{P} -name of a lifting of an automorphism on $\mathcal{P}(\mathbb{N})$. For each $b \in \mathcal{P}(\mathbb{N})$, we have arranged that $val_{\mathcal{F}}(\Phi) \upharpoonright \mathcal{P}(b)$ is trivial iff some $f \Vdash_{\mathbb{P}} \Phi \upharpoonright \mathcal{P}(b)$ is trivial.

For the remainder, assume that Φ is the valuation by \mathcal{F} of a \mathbb{P} -name of a lifting of an automorphism on $\mathcal{P}(\mathbb{N})$. For each $b \in \mathcal{P}(\mathbb{N})$, we have arranged that $val_{\mathcal{F}}(\Phi) \upharpoonright \mathcal{P}(b)$ is trivial iff some $f \Vdash_{\mathbb{P}} \Phi \upharpoonright \mathcal{P}(b)$ is trivial.

Pass to the extension by $\mathbb{P}(\mathcal{F})$. We only have that Φ is defined on $V \cap \mathcal{P}(\mathbb{N})$.

For the remainder, assume that Φ is the valuation by \mathcal{F} of a \mathbb{P} -name of a lifting of an automorphism on $\mathcal{P}(\mathbb{N})$. For each $b \in \mathcal{P}(\mathbb{N})$, we have arranged that $val_{\mathcal{F}}(\Phi) \upharpoonright \mathcal{P}(b)$ is trivial iff some $f \Vdash_{\mathbb{P}} \Phi \upharpoonright \mathcal{P}(b)$ is trivial.

Pass to the extension by $\mathbb{P}(\mathcal{F})$. We only have that Φ is defined on $V \cap \mathcal{P}(\mathbb{N})$. But this set of reals is not meager and the ω^{ω} -bounding property ensures that one can still attempt to build $\mathcal{A} = \{a_{\alpha}, x_{\alpha} : \alpha \in \omega_1\} \subset V \cap \mathcal{P}(\mathbb{N})$ so that forcing with $Q_{\mathcal{A}}$ will introduce X so that $\Phi(X)$ would have to split the gap $\{\Phi(x_{\alpha}), \Phi(a_{\alpha} \setminus x_{\alpha}) : \alpha \in \omega_1\}$,which we can now freeze.

For the remainder, assume that Φ is the valuation by \mathcal{F} of a \mathbb{P} -name of a lifting of an automorphism on $\mathcal{P}(\mathbb{N})$. For each $b \in \mathcal{P}(\mathbb{N})$, we have arranged that $val_{\mathcal{F}}(\Phi) \upharpoonright \mathcal{P}(b)$ is trivial iff some $f \Vdash_{\mathbb{P}} \Phi \upharpoonright \mathcal{P}(b)$ is trivial.

Pass to the extension by $\mathbb{P}(\mathcal{F})$. We only have that Φ is defined on $V \cap \mathcal{P}(\mathbb{N})$. But this set of reals is not meager and the ω^{ω} -bounding property ensures that one can still attempt to build $\mathcal{A} = \{a_{\alpha}, x_{\alpha} : \alpha \in \omega_1\} \subset V \cap \mathcal{P}(\mathbb{N})$ so that forcing with $Q_{\mathcal{A}}$ will introduce X so that $\Phi(X)$ would have to split the gap $\{\Phi(x_{\alpha}), \Phi(a_{\alpha} \setminus x_{\alpha}) : \alpha \in \omega_1\}$,which we can now freeze.

Corollary: Since we fail, the ideal of sets on which $\Phi \upharpoonright V$ is σ -Borel is ccc over fin holds in the extension by $\mathbb{P}(\mathcal{F})$,

III. not PFA

so what! $P_2(\mathcal{F})$ does force $\Phi \upharpoonright V$ to be trivial

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

so what! $P_2(\mathcal{F})$ does force $\Phi \upharpoonright V$ to be trivial

Let *G* be $\mathbb{P}(\mathcal{F})$ -generic.

local Lemma on steroids Assume that $b \in V \cap \mathcal{P}(\mathbb{N})$ is such that $\Phi \upharpoonright [V \cap [b]^{\omega}]$ has a σ -Borel lifting in V[G]. Then, in V, there is an $f \in \mathcal{F}$ and an increasing sequence $\{n_k : k \in \omega\} \subset \omega$ such that Φ is trivial on each $a \in [b]^{\omega}$ for which there is an $g \in \mathcal{F}$, such that $a \subset \bigcup \{[n_k, n_{k+1}) : [n_k, n_{k+1}) \subset dom(g)\}$.

(ロ) (同) (三) (三) (三) (○) (○)

so what! $P_2(\mathcal{F})$ does force $\Phi \upharpoonright V$ to be trivial

Let *G* be $\mathbb{P}(\mathcal{F})$ -generic.

local Lemma on steroids Assume that $b \in V \cap \mathcal{P}(\mathbb{N})$ is such that $\Phi \upharpoonright [V \cap [b]^{\omega}]$ has a σ -Borel lifting in V[G]. Then, in V, there is an $f \in \mathcal{F}$ and an increasing sequence $\{n_k : k \in \omega\} \subset \omega$ such that Φ is trivial on each $a \in [b]^{\omega}$ for which there is an $g \in \mathcal{F}$, such that $a \subset \bigcup \{[n_k, n_{k+1}) : [n_k, n_{k+1}) \subset dom(g)\}$.

Pulling this back and up to the generic extension by \mathbb{P} , this describes a dense P_{ω_2} -ideal, \mathfrak{J} , contained in *triv*(Φ).

so what! $P_2(\mathcal{F})$ does force $\Phi \upharpoonright V$ to be trivial

Let *G* be $\mathbb{P}(\mathcal{F})$ -generic.

local Lemma on steroids Assume that $b \in V \cap \mathcal{P}(\mathbb{N})$ is such that $\Phi \upharpoonright [V \cap [b]^{\omega}]$ has a σ -Borel lifting in V[G]. Then, in V, there is an $f \in \mathcal{F}$ and an increasing sequence $\{n_k : k \in \omega\} \subset \omega$ such that Φ is trivial on each $a \in [b]^{\omega}$ for which there is an $g \in \mathcal{F}$, such that $a \subset \bigcup \{[n_k, n_{k+1}) : [n_k, n_{k+1}) \subset dom(g)\}$.

Pulling this back and up to the generic extension by \mathbb{P} , this describes a dense P_{ω_2} -ideal, \mathfrak{J} , contained in *triv*(Φ).

But still a lot can happen in the large complement. Remember we have the generic ultrafilter x, which induces an ultrafilter yby the finite-to-one map $\psi([n_k, n_{k+1})) = k$, and so the behavior of Φ on the large set $y - \lim\{[n_k, n_{k+1}) : k \in \omega\}$ is still unknown, and this is where we expect all the action to be. III. not PFA

we work in V[H] and investigate $\Vdash_{\mathbb{P}(\mathcal{F})}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

But we have gained a (surplising) lot: For each $I \in triv(\Phi)$, let h_I denote the function on I inducing $\Phi \upharpoonright \mathcal{P}(I)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

But we have gained a (surplising) lot: For each $I \in triv(\Phi)$, let h_I denote the function on I inducing $\Phi \upharpoonright \mathcal{P}(I)$.

(日) (日) (日) (日) (日) (日) (日)

Theorem: There is a $\mathbb{P}(\mathcal{F})$ -name $\dot{h} \in \mathbb{N}^{\mathbb{N}}$ which is forced to mod finite contain h_l for all $l \in triv(\Phi)$.

But we have gained a (surplising) lot: For each $I \in triv(\Phi)$, let h_I denote the function on I inducing $\Phi \upharpoonright \mathcal{P}(I)$.

Theorem: There is a $\mathbb{P}(\mathcal{F})$ -name $\dot{h} \in \mathbb{N}^{\mathbb{N}}$ which is forced to mod finite contain h_l for all $l \in triv(\Phi)$.

So our challenge has been reduced to understanding when \dot{h} exists. (It's valuation does **not** exist in V[H])

But we have gained a (surpising) lot: For each $I \in triv(\Phi)$, let h_I denote the function on I inducing $\Phi \upharpoonright \mathcal{P}(I)$.

Theorem: There is a $\mathbb{P}(\mathcal{F})$ -name $\dot{h} \in \mathbb{N}^{\mathbb{N}}$ which is forced to mod finite contain h_l for all $l \in triv(\Phi)$.

So our challenge has been reduced to understanding when \dot{h} exists. (It's valuation does **not** exist in V[H])

The proof follows our pattern: We have our dense P_{ω_2} -ideal of functions. If forcing with $\mathbb{P}(\mathcal{F})$ adds no extension, then there is a proper poset freezing this fact. Meeting ω_1 many dense sets pulls back to an \aleph_1 -sized subfamily of our dense P_{ω_2} -ideal which can not have a common extension – contradicting that it's a P_{ω_2} -ideal.

making sense of h from local Lemma

For each *k* we are still assuming there is a single m_k such $S_k = \iota^{m_k} \setminus dom(f) \subset [n_k, n_{k+1})$ is non-empty. and that the fundamental lemma ensured that

the values of $\dot{h} \upharpoonright [n_k, n_{k+1})$ are just determined by functions $s : S_k \mapsto S_k$

so we can also assume that $f \Vdash \dot{h}([0, n_k]) \subset n_{k+1}$ and that for each $j < n_k$ and each $s : n_{k+1} \mapsto n_{k+1}$, such that $g = f \sqcup s < f$, if there is no $i \in a_g \cap n_{k+1}$ such that $\dot{h}(i) = j$, then this is true for all $\overline{f} < f \sqcup s$.

We can now complete the 2-to-1 image problem: obtain $A_1 \oplus_{x_2}^{x_1} B_2 \not\approx \mathbb{N}^*$ with propellers $A_i \oplus_{x_i} B_i$

a 2-to-1 image which is not \mathbb{N}^*

For this we force with $\mathbb{P} = P_{2,2}$ and assume that we have $A_1 \oplus_{x_2}^{x_1} B_2 = \approx_{\varphi} \mathbb{N}^*$. This implies the existence of a pair of homomorphisms, which we combine and call Φ where $\Phi_1(X)^* = \varphi^{-1}(X^* \cap A_1)$ and $\Phi_2(X)^* = \varphi^{-1}(X^* \cap B_2)$.

our \dot{h} will induce Φ on all X such that $X^* \subset A_1 \cup B_2$. Let \dot{z} denote the \mathbb{P} -name of the ultrafilter on \mathbb{N} ($\varphi(z) = \{x_1, x_2\}$) to which each of x_1 and x_2 are sent (i.e. $\Phi(X) \notin \dot{z}$ for all X with $X^* \subset A_1 \cup B_2$). It follows easily then that for all f and all $X \in x_1 \cup x_2$, $\{j : (\exists g < f, i \in X) \ i \in a_g^1 \cup b_g^2 \text{ and } g \Vdash \dot{h}(i) = j\}$ is in \dot{z}

as above we can assume that $f \Vdash \dot{h}([0, n_k]) \subset n_{k+1}$ and that for each $j < n_k$ and each $s : n_{k+1} \mapsto n_{k+1}$, such that $g = f \sqcup s < f$, if there is no $i \in (a_g^1 \cup b_g^2) \cap n_{k+1}$ such that $\dot{h}(i) = j$, then this is true for all $\bar{f} < f \sqcup s$. We can strengthen f and have $\bigcup_{k} [n_{3k+1}, n_{3k+3}) \subset dom(f)$. Recall $E = \bigcup_i \iota^{2j} \in x_1 \setminus x_2$: choose any $\overline{f} < f$ such that \overline{f} force a value on $\Phi(a_t^1 \cup b_t^2)$ (not in *z*).

fix any $j \in Y_1 \cap Y_2 \setminus \Phi(a_f^1 \cup b_f^2)$, and $g_1, g_2 < f \ i_1, i_2$ witnessing $j \in Y_1 \cap Y_2$. Let $j \in [n_k, n_{k+1})$ and (wlog) $\iota^{m_k} \subset \mathbb{N} \setminus E$.

By our construction, since there is some *i* with $i \in a_g^1$ such that $g = g_1 \cup f \Vdash \dot{h}(i) = j$, there must be an $i \in [n_k, n_{k+2}) \cap a_f^1$ such that $g_1 \cup f \Vdash \dot{h}(i) = j$. However this contradicts that $g_1 \Vdash j \notin \Phi(a_f^1 \cup b_f^2)$, and that \bar{f} forces $\dot{h} \supset^* h_{a_1^1}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

fix any $j \in Y_1 \cap Y_2 \setminus \Phi(a_f^1 \cup b_f^2)$, and $g_1, g_2 < f \ i_1, i_2$ witnessing $j \in Y_1 \cap Y_2$. Let $j \in [n_k, n_{k+1})$ and (wlog) $\iota^{m_k} \subset \mathbb{N} \setminus E$.

By our construction, since there is some *i* with $i \in a_g^1$ such that $g = g_1 \cup f \Vdash \dot{h}(i) = j$, there must be an $i \in [n_k, n_{k+2}) \cap a_f^1$ such that $g_1 \cup f \Vdash \dot{h}(i) = j$. However this contradicts that $g_1 \Vdash j \notin \Phi(a_f^1 \cup b_f^2)$, and that \bar{f} forces $\dot{h} \supset^* h_{a_1^1}$.

one of the things that is going on is that things about Φ are forced by \mathbb{P} , while things about \dot{h} are forced by $\mathbb{P}(\mathcal{F})$

A D F A 同 F A E F A E F A Q A

III. not PFA

the hard work begins

next step was: **Theorem** $triv(\Phi)$ is a ccc over fin P_{ω_2} -ideal.

the hard work begins

next step was: **Theorem** $triv(\Phi)$ is a ccc over fin P_{ω_2} -ideal.

but for more control, e.g. there are no 3-points, all automorphisms are trivial. we have only succeeded with P_1 and P_0 (and their products).

(ロ) (同) (三) (三) (三) (○) (○)

the hard work begins

next step was: **Theorem** $triv(\Phi)$ is a ccc over fin P_{ω_2} -ideal.

but for more control, e.g. there are no 3-points, all automorphisms are trivial. we have only succeeded with P_1 and P_0 (and their products).

Key Lemma The condition *f* and sequence $\{n_k\} \nearrow$ can be chosen so that there is a partial function $\psi : \mathbb{N} \mapsto \mathbb{N} \setminus dom(f)$ so that for all $i \notin dom(f)$, $\psi^{-1}(i) \subset [n_k, n_{k+1})$ for some *k*, and for all g < f, *g* forces a value on $\dot{h} \upharpoonright \psi^{-1}(i)$ iff $f \cup \{(i, g(i))\}$ forces this value.

the hard work begins

next step was: **Theorem** $triv(\Phi)$ is a ccc over fin P_{ω_2} -ideal.

but for more control, e.g. there are no 3-points, all automorphisms are trivial. we have only succeeded with P_1 and P_0 (and their products).

Key Lemma The condition *f* and sequence $\{n_k\} \nearrow$ can be chosen so that there is a partial function $\psi : \mathbb{N} \mapsto \mathbb{N} \setminus dom(f)$ so that for all $i \notin dom(f)$, $\psi^{-1}(i) \subset [n_k, n_{k+1})$ for some *k*, and for all g < f, *g* forces a value on $\dot{h} \upharpoonright \psi^{-1}(i)$ iff $f \cup \{(i, g(i))\}$ forces this value.

Let *L* be the domain of ψ . It follows that if Φ is not trivial, then $L \notin triv(\Phi)$ (but we skip).

so all automorphisms are trivial

Choose just *any* total function g extending f; but for definiteness assume that g(i) = 0 for all $i \notin dom(f)$. This defines a ground model function h as an interpretation of \dot{h} , i.e. $h(\ell) = j$ if $\psi(\ell) = i$ and $f \cup \{(i, 0)\} \Vdash \dot{h}(\ell) = j$. We know that this function h does not induce Φ , so it is easy to show that there is an infinite set $Y \subset L$ such that $h[Y] \cap F(Y)$ is empty.

It's simple enough to now shrink *Y* and arrange that $K = \{k : Y \cap [n_k, n_{k+1}) \neq \emptyset\}$ and $J = \bigcup_{k \in K} [n_k, n_{k+1})$, are such that $f \cup g \upharpoonright J$ is a condition. This condition forces that \dot{h} does not extend h_J despite the fact that $J \in \mathfrak{J} \subset triv(\Phi)$.

III. not PFA

a tamer key lemma

III. not PFA

a tamer key lemma

We produce *f* so that g < f decides $\dot{h}(i)$ so long as $i \in dom(g)$. (assuming $g \Vdash \dot{h} \upharpoonright dom(g) \in V$)

a tamer key lemma

We produce *f* so that g < f decides $\dot{h}(i)$ so long as $i \in dom(g)$. (assuming $g \Vdash \dot{h} \upharpoonright dom(g) \in V$)

We will recursively choose $f_j < f_{j-1} < \cdots f_0 = f$. Also, let i_j^k be the minimum element of $\iota^{m_k} \setminus dom(f_{j-1})$ (if it exists) and $K_j = \{k \in K_{j-1} : i_j^k \text{ exists}\}$. We choose $f_i < f_{j-1}$ by a length 2^{j+1} induction.

a tamer key lemma

We produce *f* so that g < f decides $\dot{h}(i)$ so long as $i \in dom(g)$. (assuming $g \Vdash \dot{h} \upharpoonright dom(g) \in V$)

We will recursively choose $f_j < f_{j-1} < \cdots f_0 = f$. Also, let i_j^k be the minimum element of $\iota^{m_k} \setminus dom(f_{j-1})$ (if it exists) and $K_j = \{k \in K_{j-1} : i_j^k \text{ exists}\}.$ We choose $f_i < f_{j-1}$ by a length 2^{j+1} induction.

For a condition $g \in \mathbb{P}$ and function $\psi \in 2^{j+1}$, define

 g^{ψ} by redefining g at all values in $\{i_{\ell}^{k} : \ell \leq j, k \in K_{j}\}$ so that $g^{\psi}(i_{\ell}^{k}) = \psi(\ell)$ for all $k \in K_{j}$ (and otherwise agrees with g).

a tamer key lemma

We produce *f* so that g < f decides $\dot{h}(i)$ so long as $i \in dom(g)$. (assuming $g \Vdash \dot{h} \upharpoonright dom(g) \in V$)

We will recursively choose $f_j < f_{j-1} < \cdots f_0 = f$. Also, let i_j^k be the minimum element of $\iota^{m_k} \setminus dom(f_{j-1})$ (if it exists) and $K_j = \{k \in K_{j-1} : i_j^k \text{ exists}\}.$ We choose $f_i < f_{j-1}$ by a length 2^{j+1} induction.

For a condition $g \in \mathbb{P}$ and function $\psi \in 2^{j+1}$, define

 g^{ψ} by redefining g at all values in $\{i_{\ell}^{k} : \ell \leq j, k \in K_{j}\}$ so that $g^{\psi}(i_{\ell}^{k}) = \psi(\ell)$ for all $k \in K_{j}$ (and otherwise agrees with g).

By this process it is a simple matter to ensure that f_j^{ψ} forces a value on $\dot{h}(i_j^k)$ for all $k \in K_j$. (by the assumption that *f* forces that $\dot{h} \upharpoonright \{i_i^k : k \in K_j\}$ is in *V*).

When this induction is done, we have an increasing sequence $\{k_j : j \in \omega\}$ so that $I_j = \{i_\ell^{k_j} : \ell < j\}$ was successfully chosen.

When this induction is done, we have an increasing sequence $\{k_j : j \in \omega\}$ so that $I_j = \{i_\ell^{k_j} : \ell < j\}$ was successfully chosen.

The union $\bigcup_j f_j$ is a function (but likely not a condition) but we can remove the set $I = \bigcup_j I_j$ from its domain and let (re-using the letter) $f = \bigcup_j f_j \upharpoonright \mathbb{N} \setminus I$.

When this induction is done, we have an increasing sequence $\{k_j : j \in \omega\}$ so that $I_j = \{i_\ell^{k_j} : \ell < j\}$ was successfully chosen.

The union $\bigcup_j f_j$ is a function (but likely not a condition) but we can remove the set $I = \bigcup_j I_j$ from its domain and let (re-using the letter) $f = \bigcup_j f_j \upharpoonright \mathbb{N} \setminus I$.

We repeat the above fusion exactly except this time the definition of i_j^k is the maximum element of $\iota^{m_k} \setminus dom(f_{j-1})$ rather than the minimum.

And again, we finish the fusion, obtaining a larger function f and so that $\iota^{m_k} \setminus dom(f) \subset \{i_0^k, \ldots, i_j^k\}$ for some j (whose value diverges to infinity along some set K).

The construction has arranged that for each k and i_{ℓ}^{k} , and each function $s : S_{k} \mapsto 2$, each of $f \cup s \upharpoonright (S_{k} \cap i_{\ell}^{k} + 1)$ and $f \cup s \upharpoonright (S_{k} \setminus i_{\ell}^{k})$ force a value on $\dot{h}(i)$. Since they can't be different values, it follows that the value of $s(i_{\ell}^{k})$ is really what is determining $\dot{h}(i_{\ell}^{k})$ (and we're done).

The construction has arranged that for each *k* and i_{ℓ}^{k} , and each function $s : S_{k} \mapsto 2$, each of $f \cup s \upharpoonright (S_{k} \cap i_{\ell}^{k} + 1)$ and $f \cup s \upharpoonright (S_{k} \setminus i_{\ell}^{k})$ force a value on $\dot{h}(i)$. Since they can't be different values, it follows that the value of $s(i_{\ell}^{k})$ is really what is determining $\dot{h}(i_{\ell}^{k})$ (and we're done).

(日) (日) (日) (日) (日) (日) (日)

Corollary: x is not a 2-point in A

The construction has arranged that for each k and i_{ℓ}^{k} , and each function $s : S_{k} \mapsto 2$, each of $f \cup s \upharpoonright (S_{k} \cap i_{\ell}^{k} + 1)$ and $f \cup s \upharpoonright (S_{k} \setminus i_{\ell}^{k})$ force a value on $\dot{h}(i)$. Since they can't be different values, it follows that the value of $s(i_{\ell}^{k})$ is really what is determining $\dot{h}(i_{\ell}^{k})$ (and we're done).

Corollary: x is not a 2-point in A

otherwise, \dot{h} can be assumed to mod fin extend a coherent family of maps $h_g : a_g \mapsto 2$ ($i \in a_g$ if g(i) = 0)

The construction has arranged that for each k and i_{ℓ}^{k} , and each function $s : S_{k} \mapsto 2$, each of $f \cup s \upharpoonright (S_{k} \cap i_{\ell}^{k} + 1)$ and $f \cup s \upharpoonright (S_{k} \setminus i_{\ell}^{k})$ force a value on $\dot{h}(i)$. Since they can't be different values, it follows that the value of $s(i_{\ell}^{k})$ is really what is determining $\dot{h}(i_{\ell}^{k})$ (and we're done).

Corollary: x is not a 2-point in A

otherwise, \dot{h} can be assumed to mod fin extend a coherent family of maps $h_g : a_g \mapsto 2$ ($i \in a_g$ if g(i) = 0)

With our condition *f* as above and $I = \mathbb{N} \setminus dom(f)$, we partition $I = I_0 \cup I_1$ by $i \in I_0$ iff $f \cup \{(i, 0)\} \Vdash \dot{h}(i) = 0$;

by symmetry may assume $\limsup |I_0 \cap S_k|$ is infinite. Then $f \cup I_1 \times \{1\}$ forces that \dot{h} is constantly 0 on $A \setminus a_f^*$