Moron Maps and subspaces of N^{*} extending PFA

Alan Dow
Department of Mathematics
University of North Carolina Charlotte

winter school 2010

forcing over PFA

forcing over PFA

Velickovic defined a poset P_{2} by $p \in P_{2}$ is a map with no fixed points and $p^{2}=p$; henceforth, let $\iota^{n}=\left[2^{n}, 2^{n+1}\right.$)
$p: \iota^{n} \mapsto \iota^{n}$ and $\limsup \left|\iota^{n} \backslash \operatorname{dom}(p)\right|$ is infinite.

forcing over PFA

Velickovic defined a poset P_{2} by $p \in P_{2}$ is a map with no fixed points and $p^{2}=p$; henceforth, let $\iota^{n}=\left[2^{n}, 2^{n+1}\right.$)
$p: \iota^{n} \mapsto \iota^{n}$ and $\lim \sup \left|\iota^{n} \backslash \operatorname{dom}(p)\right|$ is infinite.
P_{2} is ordered by \supset^{*} (i.e. $p<q$ if $p \supset^{*} q$)

forcing over PFA

Velickovic defined a poset P_{2} by $p \in P_{2}$ is a map with no fixed points and $p^{2}=p$; henceforth, let $\iota^{n}=\left[2^{n}, 2^{n+1}\right)$
$p: \iota^{n} \mapsto \iota^{n}$ and $\limsup \left|\iota^{n} \backslash \operatorname{dom}(p)\right|$ is infinite.
P_{2} is ordered by \supset^{*} (i.e. $p<q$ if $p \supset^{*} q$)
set $a_{p}=\{i: i<p(i)\}$ and $b_{p}=\{i: p(i)<i\}\left(p\left(a_{p}\right)=b_{p}\right)$.

forcing over PFA

Velickovic defined a poset P_{2} by $p \in P_{2}$ is a map with no fixed points and $p^{2}=p$; henceforth, let $\iota^{n}=\left[2^{n}, 2^{n+1}\right)$
$p: \iota^{n} \mapsto \iota^{n}$ and $\limsup \left|\iota^{n} \backslash \operatorname{dom}(p)\right|$ is infinite.
P_{2} is ordered by \supset^{*} (i.e. $p<q$ if $p \supset^{*} q$)
set $a_{p}=\{i: i<p(i)\}$ and $b_{p}=\{i: p(i)<i\}\left(p\left(a_{p}\right)=b_{p}\right)$.
If $G \subset P_{2}$ is generic, then $x=\{\mathbb{N} \backslash \operatorname{dom}(p): p \in G\}$ is an ultrafilter on \mathbb{N}, and $\langle x, x\rangle \cup \bigcup p^{*}$ is an autohomeomorphism on \mathbb{N}^{*} with unique fixed point x.

forcing over PFA

Velickovic defined a poset P_{2} by $p \in P_{2}$ is a map with no fixed points and $p^{2}=p$; henceforth, let $\iota^{n}=\left[2^{n}, 2^{n+1}\right)$
$p: \iota^{n} \mapsto \iota^{n}$ and $\limsup \left|\iota^{n} \backslash \operatorname{dom}(p)\right|$ is infinite.
P_{2} is ordered by \supset^{*} (i.e. $p<q$ if $p \supset^{*} q$)
set $a_{p}=\{i: i<p(i)\}$ and $b_{p}=\{i: p(i)<i\}\left(p\left(a_{p}\right)=b_{p}\right)$.
If $G \subset P_{2}$ is generic, then $x=\{\mathbb{N} \backslash \operatorname{dom}(p): p \in G\}$ is an ultrafilter on \mathbb{N}, and $\langle x, x\rangle \cup \cup p^{*}$ is an autohomeomorphism on \mathbb{N}^{*} with unique fixed point x.
Of course, x is a propeller point: $A \oplus_{x} B$ where $A=\{x\} \cup \bigcup_{p \in G} a_{p}^{*}$ and $B=\{x\} \cup \bigcup_{p \in G} b_{p}^{*}$.

forcing over PFA

Velickovic defined a poset P_{2} by $p \in P_{2}$ is a map with no fixed points and $p^{2}=p$; henceforth, let $\iota^{n}=\left[2^{n}, 2^{n+1}\right)$
$p: \iota^{n} \mapsto \iota^{n}$ and $\lim \sup \left|\iota^{n} \backslash \operatorname{dom}(p)\right|$ is infinite.
P_{2} is ordered by \supset^{*} (i.e. $p<q$ if $p \supset^{*} q$)
set $a_{p}=\{i: i<p(i)\}$ and $b_{p}=\{i: p(i)<i\}\left(p\left(a_{p}\right)=b_{p}\right)$.
If $G \subset P_{2}$ is generic, then $x=\{\mathbb{N} \backslash \operatorname{dom}(p): p \in G\}$ is an ultrafilter on \mathbb{N}, and $\langle x, x\rangle \cup \bigcup p^{*}$ is an autohomeomorphism on \mathbb{N}^{*} with unique fixed point x.
Of course, x is a propeller point: $A \oplus_{x} B$ where $A=\{x\} \cup \bigcup_{p \in G} a_{p}^{*}$ and $B=\{x\} \cup \bigcup_{p \in G} b_{p}^{*}$.
Question 1 could such a point be selective?

2-to-1 image which is not \mathbb{N}^{*} ?

2-to-1 image which is not \mathbb{N}^{*} ?

A minor modification, $P_{2,2}$, is to add two (or finitely many) ultrafilters, a minor change
$\lim \sup \left|\iota^{2 n} \backslash \operatorname{dom}(p)\right|$ and $\lim \sup \left|\iota^{2 n+1} \backslash \operatorname{dom}(p)\right|$ are both required to be infinite (same as $P_{2} \times P_{2}$).

2-to-1 image which is not \mathbb{N}^{*} ?

A minor modification, $P_{2,2}$, is to add two (or finitely many) ultrafilters, a minor change
$\lim \sup \left|\iota^{2 n} \backslash \operatorname{dom}(p)\right|$ and $\lim \sup \left|\iota^{2 n+1} \backslash \operatorname{dom}(p)\right|$ are both required to be infinite (same as $P_{2} \times P_{2}$).
Let $E=\bigcup_{n} \iota^{2 n}$ and $O=\mathbb{N} \backslash E$

2-to-1 image which is not \mathbb{N}^{*} ?

A minor modification, $P_{2,2}$, is to add two (or finitely many) ultrafilters, a minor change
$\lim \sup \left|\iota^{2 n} \backslash \operatorname{dom}(p)\right|$ and $\lim \sup \left|\iota^{2 n+1} \backslash \operatorname{dom}(p)\right|$ are both required to be infinite (same as $P_{2} \times P_{2}$).
Let $E=\bigcup_{n} \iota^{2 n}$ and $O=\mathbb{N} \backslash E$
We get x_{1} with the base $\{E \backslash \operatorname{dom}(p): p \in G\}$ and x_{2} has the base $\{O \backslash \operatorname{dom}(p): p \in G\}$

2-to-1 image which is not \mathbb{N}^{*} ?

A minor modification, $P_{2,2}$, is to add two (or finitely many) ultrafilters, a minor change
$\lim \sup \left|\iota^{2 n} \backslash \operatorname{dom}(p)\right|$ and $\lim \sup \left|\iota^{2 n+1} \backslash \operatorname{dom}(p)\right|$ are both required to be infinite (same as $P_{2} \times P_{2}$).
Let $E=\bigcup_{n} \iota^{2 n}$ and $O=\mathbb{N} \backslash E$
We get x_{1} with the base $\{E \backslash \operatorname{dom}(p): p \in G\}$ and x_{2} has the base $\{O \backslash \operatorname{dom}(p): p \in G\}$

So $E^{*} \approx A_{1} \oplus_{x_{1}} B_{1}$ and $O^{*} \approx A_{2} \oplus_{x_{2}} B_{2}$

2-to-1 image which is not \mathbb{N}^{*} ?

A minor modification, $P_{2,2}$, is to add two (or finitely many) ultrafilters, a minor change
$\lim \sup \left|\iota^{2 n} \backslash \operatorname{dom}(p)\right|$ and $\lim \sup \left|\iota^{2 n+1} \backslash \operatorname{dom}(p)\right|$ are both required to be infinite (same as $P_{2} \times P_{2}$).
Let $E=\bigcup_{n} \iota^{2 n}$ and $O=\mathbb{N} \backslash E$
We get x_{1} with the base $\{E \backslash \operatorname{dom}(p): p \in G\}$ and x_{2} has the base $\{O \backslash \operatorname{dom}(p): p \in G\}$

So $E^{*} \approx A_{1} \oplus_{x_{1}} B_{1}$ and $O^{*} \approx A_{2} \oplus_{x_{2}} B_{2}$
ask: is $A_{1} \oplus_{X_{2}}^{x_{1}} B_{2} \not \not \not \approx \mathbb{N}^{*}$

2-to-1 image which is not \mathbb{N}^{*} ?

A minor modification, $P_{2,2}$, is to add two (or finitely many) ultrafilters, a minor change
$\lim \sup \left|\iota^{2 n} \backslash \operatorname{dom}(p)\right|$ and $\lim \sup \left|\iota^{2 n+1} \backslash \operatorname{dom}(p)\right|$ are both required to be infinite (same as $P_{2} \times P_{2}$).
Let $E=\bigcup_{n} \iota^{2 n}$ and $O=\mathbb{N} \backslash E$
We get x_{1} with the base $\{E \backslash \operatorname{dom}(p): p \in G\}$ and x_{2} has the base $\{O \backslash \operatorname{dom}(p): p \in G\}$

So $E^{*} \approx A_{1} \oplus_{x_{1}} B_{1}$ and $O^{*} \approx A_{2} \oplus_{x_{2}} B_{2}$
ask: is $A_{1} \oplus_{x_{2}}^{x_{1}} B_{2} \not \not \not \approx \mathbb{N}^{*}$
I (and others) knew long ago that this was true BUT!!

2-to-1 image which is not \mathbb{N}^{*} ?

A minor modification, $P_{2,2}$, is to add two (or finitely many) ultrafilters, a minor change
$\lim \sup \left|\iota^{2 n} \backslash \operatorname{dom}(p)\right|$ and $\lim \sup \left|\iota^{2 n+1} \backslash \operatorname{dom}(p)\right|$ are both required to be infinite (same as $P_{2} \times P_{2}$).
Let $E=\bigcup_{n} \iota^{2 n}$ and $O=\mathbb{N} \backslash E$
We get x_{1} with the base $\{E \backslash \operatorname{dom}(p): p \in G\}$ and x_{2} has the base $\{O \backslash \operatorname{dom}(p): p \in G\}$

So $E^{*} \approx A_{1} \oplus_{x_{1}} B_{1}$ and $O^{*} \approx A_{2} \oplus_{x_{2}} B_{2}$
ask: is $A_{1} \oplus_{x_{2}}^{x_{1}} B_{2} \not \not \not \approx \mathbb{N}^{*}$
I (and others) knew long ago that this was true BUT!! I had to learn all these methods better

many variants exist

$p \in P_{4}$ (replacing ι^{n} by $\left[4^{n}, 4^{n+1}\right)$) by keeping everything else the same except requiring that each $i \in \operatorname{dom}(p)$ has an orbit of size 4.

many variants exist

$p \in P_{4}$ (replacing ι^{n} by $\left[4^{n}, 4^{n+1}\right)$) by keeping everything else the same except requiring that each $i \in \operatorname{dom}(p)$ has an orbit of size 4.

Force with $P_{2} \times P_{4}$ to again get x_{1} and x_{4}; but x_{4} would be a 4-point but still can define $A_{2} \oplus_{x_{4}} B_{2}$ but each of these would be split as well $A_{2}=A_{2,1} \oplus_{x_{4}} A_{2,2}$ and $B_{2}=B_{2,1} \oplus_{x_{4}} B_{2,2}$ and $A_{1} \oplus B_{2}$ would then be a 3-point

many variants exist

$p \in P_{4}$ (replacing ι^{n} by $\left[4^{n}, 4^{n+1}\right)$) by keeping everything else the same except requiring that each $i \in \operatorname{dom}(p)$ has an orbit of size 4.

Force with $P_{2} \times P_{4}$ to again get x_{1} and x_{4}; but x_{4} would be a 4-point but still can define $A_{2} \oplus_{x_{4}} B_{2}$ but each of these would be split as well $A_{2}=A_{2,1} \oplus_{x_{4}} A_{2,2}$ and $B_{2}=B_{2,1} \oplus_{x_{4}} B_{2,2}$ and $A_{1} \oplus B_{2}$ would then be a 3-point
and "everyone knows" that $P_{2} \times P_{4}$ would not add a 3-point to \mathbb{N}^{*} and so this would be a much more instructive example of a 2-to-1 image which was not homeomorphic to \mathbb{N}^{*}.

many variants exist

$p \in P_{4}$ (replacing ι^{n} by $\left[4^{n}, 4^{n+1}\right)$) by keeping everything else the same except requiring that each $i \in \operatorname{dom}(p)$ has an orbit of size 4.

Force with $P_{2} \times P_{4}$ to again get x_{1} and x_{4}; but x_{4} would be a 4-point but still can define $A_{2} \oplus_{x_{4}} B_{2}$ but each of these would be split as well $A_{2}=A_{2,1} \oplus_{x_{4}} A_{2,2}$ and $B_{2}=B_{2,1} \oplus_{x_{4}} B_{2,2}$ and $A_{1} \oplus B_{2}$ would then be a 3-point
and "everyone knows" that $P_{2} \times P_{4}$ would not add a 3-point to \mathbb{N}^{*} and so this would be a much more instructive example of a 2-to-1 image which was not homeomorphic to \mathbb{N}^{*}.
although, P_{3} does add a 4-point

many but not so many automorphisms

We are progressing from two papers:

many but not so many automorphisms

We are progressing from two papers:
[Shelah-Steprans] Force with P_{2} over PFA then there is a non-trivial automorphism but each automorphism is somewhere trivial.

many but not so many automorphisms

We are progressing from two papers:
[Shelah-Steprans] Force with P_{2} over PFA then there is a non-trivial automorphism but each automorphism is somewhere trivial.
[Steprans] Force over PFA with P_{2}^{κ} (countable support product), then the number of automorphisms is κ^{ω} (which can be less than 2^{c}).

many but not so many automorphisms

We are progressing from two papers:
[Shelah-Steprans] Force with P_{2} over PFA then there is a non-trivial automorphism but each automorphism is somewhere trivial.
[Steprans] Force over PFA with P_{2}^{κ} (countable support product), then the number of automorphisms is κ^{ω} (which can be less than 2^{c}).

I was intrigued by the quote: P_{2} adds an automorphism "while doing as little else as possible".

Two other modifications

$$
p \in P_{0} \text { if } p: \operatorname{dom}(p) \mapsto 2
$$

Two other modifications

$p \in P_{0}$ if $p: \operatorname{dom}(p) \mapsto 2$
and $p \in P_{1}$ if $p: \operatorname{dom}(p) \mapsto 2$; $\left|p^{-1}(1) \cap \iota^{n}\right| \leq 1$ for all n, and $\liminf \left\{\iota^{n} \backslash \operatorname{dom}(p) \mid: p^{-1}(1) \cap \iota^{n}=\emptyset\right\}$ is infinite.

Two other modifications

$p \in P_{0}$ if $p: \operatorname{dom}(p) \mapsto 2$
and $p \in P_{1}$ if $p: \operatorname{dom}(p) \mapsto 2 ;\left|p^{-1}(1) \cap \iota^{n}\right| \leq 1$ for all n, and $\liminf \left\{\iota^{n} \backslash \operatorname{dom}(p) \mid: p^{-1}(1) \cap \iota^{n}=\emptyset\right\}$ is infinite.
force over PFA results (and more questions)

Two other modifications

$p \in P_{0}$ if $p: \operatorname{dom}(p) \mapsto 2$
and $p \in P_{1}$ if $p: \operatorname{dom}(p) \mapsto 2$; $\left|p^{-1}(1) \cap \iota^{n}\right| \leq 1$ for all n, and $\liminf \left\{\iota^{n} \backslash \operatorname{dom}(p) \mid: p^{-1}(1) \cap \iota^{n}=\emptyset\right\}$ is infinite.
force over PFA results (and more questions)
with P_{1} : there is an embedding of \mathbb{N}^{*} as a regular closed set $A \subset \mathbb{N}^{*}$ with a single point as the boundary. (indeed, simply $\left.\{x\} \cup \bigcup_{p \in G}\left(p^{-1}(1)\right)^{*}\right)$

Two other modifications

$p \in P_{0}$ if $p: \operatorname{dom}(p) \mapsto 2$
and $p \in P_{1}$ if $p: \operatorname{dom}(p) \mapsto 2 ;\left|p^{-1}(1) \cap \iota^{n}\right| \leq 1$ for all n, and $\lim \inf \left\{\left|\iota^{n} \backslash \operatorname{dom}(p)\right|: p^{-1}(1) \cap \iota^{n}=\emptyset\right\}$ is infinite.
force over PFA results (and more questions)
with P_{1} : there is an embedding of \mathbb{N}^{*} as a regular closed set $A \subset \mathbb{N}^{*}$ with a single point as the boundary. (indeed, simply $\left.\{x\} \cup \bigcup_{p \in G}\left(p^{-1}(1)\right)^{*}\right)$
with P_{0}, P_{1} gives models in which automorphisms are trivial.

Two other modifications

$p \in P_{0}$ if $p: \operatorname{dom}(p) \mapsto 2$
and $p \in P_{1}$ if $p: \operatorname{dom}(p) \mapsto 2 ;\left|p^{-1}(1) \cap \iota^{n}\right| \leq 1$ for all n, and $\lim \inf \left\{\left|\iota^{n} \backslash \operatorname{dom}(p)\right|: p^{-1}(1) \cap \iota^{n}=\emptyset\right\}$ is infinite.
force over PFA results (and more questions)
with P_{1} : there is an embedding of \mathbb{N}^{*} as a regular closed set $A \subset \mathbb{N}^{*}$ with a single point as the boundary. (indeed, simply $\left.\{x\} \cup \bigcup_{p \in G}\left(p^{-1}(1)\right)^{*}\right)$
with P_{0}, P_{1} gives models in which automorphisms are trivial.
all variants gives $\operatorname{triv}(\Phi)$ is a ccc over fin $P_{\omega_{2}}$-ideal

Two other modifications

$p \in P_{0}$ if $p: \operatorname{dom}(p) \mapsto 2$
and $p \in P_{1}$ if $p: \operatorname{dom}(p) \mapsto 2 ;\left|p^{-1}(1) \cap \iota^{n}\right| \leq 1$ for all n, and $\lim \inf \left\{\left|\iota^{n} \backslash \operatorname{dom}(p)\right|: p^{-1}(1) \cap \iota^{n}=\emptyset\right\}$ is infinite.
force over PFA results (and more questions)
with P_{1} : there is an embedding of \mathbb{N}^{*} as a regular closed set $A \subset \mathbb{N}^{*}$ with a single point as the boundary. (indeed, simply $\left.\{x\} \cup \bigcup_{p \in G}\left(p^{-1}(1)\right)^{*}\right)$
with P_{0}, P_{1} gives models in which automorphisms are trivial.
all variants gives $\operatorname{triv}(\Phi)$ is a ccc over fin $P_{\omega_{2}}$-ideal
Conjecture: all automorphisms are FINITE over fin.

Two other modifications

$p \in P_{0}$ if $p: \operatorname{dom}(p) \mapsto 2$
and $p \in P_{1}$ if $p: \operatorname{dom}(p) \mapsto 2 ;\left|p^{-1}(1) \cap \iota^{n}\right| \leq 1$ for all n, and $\lim \inf \left\{\left|\iota^{n} \backslash \operatorname{dom}(p)\right|: p^{-1}(1) \cap \iota^{n}=\emptyset\right\}$ is infinite.
force over PFA results (and more questions)
with P_{1} : there is an embedding of \mathbb{N}^{*} as a regular closed set $A \subset \mathbb{N}^{*}$ with a single point as the boundary. (indeed, simply $\left.\{x\} \cup \bigcup_{p \in G}\left(p^{-1}(1)\right)^{*}\right)$
with P_{0}, P_{1} gives models in which automorphisms are trivial.
all variants gives $\operatorname{triv}(\Phi)$ is a ccc over fin $P_{\omega_{2}}$-ideal
Conjecture: all automorphisms are FINITE over fin.
Questions galore: e.g. force with P_{2}, is every 2-point RK-equivalent to the generic x ?

PFA creates conditions in the poset

PFA creates conditions in the poset

A natural fusion process goes something like this:

PFA creates conditions in the poset

A natural fusion process goes something like this:
Define $p<_{k, n} q$ (for $n, k \in \omega$) if $p \supset q$ and for each $j \leq k$,

$$
p \upharpoonright \iota^{j}=q \upharpoonright \iota^{j} \text { and }\left|\iota^{k} \backslash \operatorname{dom}(q)\right|>n
$$

PFA creates conditions in the poset

A natural fusion process goes something like this:
Define $p<_{k, n} q$ (for $n, k \in \omega$) if $p \supset q$ and for each $j \leq k$, $p \upharpoonright \iota^{j}=q \upharpoonright \iota^{j}$ and $\left|\iota^{k} \backslash \operatorname{dom(q)}\right|>n$

For a sequence $\left\{p_{n}, k_{n}\right\}_{n}$ such that $p_{n+1}<_{k_{n}, n} p_{n}$, getting p_{n+1} deciding max possible! then $\bigcup_{n} p_{n} \upharpoonright \max \left(\iota^{k_{n}}\right)$ is in the poset.

PFA creates conditions in the poset

A natural fusion process goes something like this:
Define $p<_{k, n} q$ (for $n, k \in \omega$) if $p \supset q$ and for each $j \leq k$, $p \upharpoonright \iota^{j}=q \upharpoonright \iota^{j}$ and $\left|\iota^{k} \backslash \operatorname{dom(q)}\right|>n$

For a sequence $\left\{p_{n}, k_{n}\right\}_{n}$ such that $p_{n+1}<_{k_{n}, n} p_{n}$, getting p_{n+1} deciding max possible! then $\bigcup_{n} p_{n} \upharpoonright \max \left(\iota^{k_{n}}\right)$ is in the poset.

So it follows easily that \mathbb{P} is \aleph_{1}-closed and does not add subsets of \mathbb{N} (just new ultrafilters and maps on \mathbb{N}).

PFA creates conditions in the poset

A natural fusion process goes something like this:
Define $p<_{k, n} q$ (for $n, k \in \omega$) if $p \supset q$ and for each $j \leq k$, $p \upharpoonright u^{j}=q \upharpoonright \iota^{j}$ and $\left|\iota^{k} \backslash \operatorname{dom}(q)\right|>n$

For a sequence $\left\{p_{n}, k_{n}\right\}_{n}$ such that $p_{n+1}<_{k_{n}, n} p_{n}$, getting p_{n+1} deciding max possible! then $\bigcup_{n} p_{n} \upharpoonright \max \left(\iota^{k_{n}}\right)$ is in the poset.

So it follows easily that \mathbb{P} is \aleph_{1}-closed and does not add subsets of \mathbb{N} (just new ultrafilters and maps on \mathbb{N}).

We will use the Shelah-Steprans technique for producing new elements of \mathbb{P} (representing one of the posets described above). It uses the CH trick.
the poset $\mathbb{P}(\mathcal{F})$ and CH trick

the poset $\mathbb{P}(\mathcal{F})$ and CH trick

Let $H \subset{ }^{<\omega_{1}} 2$ be a generic filter (so no change to \mathbb{P}) and then let \mathcal{F} be a generic filter for \mathbb{P} (or use \diamond to construct, so it's in $V[H]$).

the poset $\mathbb{P}(\mathcal{F})$ and CH trick

Let $H \subset{ }^{<\omega_{1}} 2$ be a generic filter (so no change to \mathbb{P}) and then let \mathcal{F} be a generic filter for \mathbb{P} (or use \diamond to construct, so it's in $V[H]$).

Now we let $\mathbb{P}(\mathcal{F})$ simply be the collection $\mathcal{F} \subset \mathbb{P}$ ordered by \supset (true inclusion); we'll start using f, g to refer to its elements.

the poset $\mathbb{P}(\mathcal{F})$ and CH trick

Let $H \subset<\omega_{1} 2$ be a generic filter (so no change to \mathbb{P}) and then let \mathcal{F} be a generic filter for \mathbb{P} (or use \diamond to construct, so it's in $V[H]$).

Now we let $\mathbb{P}(\mathcal{F})$ simply be the collection $\mathcal{F} \subset \mathbb{P}$ ordered by \supset (true inclusion); we'll start using f, g to refer to its elements.
E.G. Let $M \prec H(\theta)$ be a countable elementary submodel and $\dot{h} \subset \omega \times \omega \times \mathbb{P}\left(\right.$ a potential name for a member of $\left.\omega^{\omega}\right)$.

the poset $\mathbb{P}(\mathcal{F})$ and CH trick

Let $H \subset<\omega_{1} 2$ be a generic filter (so no change to \mathbb{P}) and then let \mathcal{F} be a generic filter for \mathbb{P} (or use \diamond to construct, so it's in $V[H]$).

Now we let $\mathbb{P}(\mathcal{F})$ simply be the collection $\mathcal{F} \subset \mathbb{P}$ ordered by \supset (true inclusion); we'll start using f, g to refer to its elements.
E.G. Let $M \prec H(\theta)$ be a countable elementary submodel and $\dot{h} \subset \omega \times \omega \times \mathbb{P}$ (a potential name for a member of ω^{ω}). There is an $f \in \mathbb{P}$ and $h \in \omega^{\omega}$ so that

$$
f \Vdash_{\mathbb{P}} f \text { is }(M, \mathbb{P}(\mathcal{F})) \text {-generic }
$$

and $f \Vdash_{\mathbb{P}(\mathcal{F})}$ if $\dot{h} \in \omega^{\omega}$, then $\dot{h}<\check{h}$

the poset $\mathbb{P}(\mathcal{F})$ and CH trick

Let $H \subset<\omega_{1} 2$ be a generic filter (so no change to \mathbb{P}) and then let \mathcal{F} be a generic filter for \mathbb{P} (or use \diamond to construct, so it's in $V[H]$).

Now we let $\mathbb{P}(\mathcal{F})$ simply be the collection $\mathcal{F} \subset \mathbb{P}$ ordered by \supset (true inclusion); we'll start using f, g to refer to its elements.
E.G. Let $M \prec H(\theta)$ be a countable elementary submodel and $\dot{h} \subset \omega \times \omega \times \mathbb{P}$ (a potential name for a member of $\left.\omega^{\omega}\right)$. There is an $f \in \mathbb{P}$ and $h \in \omega^{\omega}$ so that

$$
f \Vdash_{\mathbb{P}} f \text { is }(M, \mathbb{P}(\mathcal{F})) \text {-generic }
$$

and $f \Vdash_{\mathbb{P}(\mathcal{F})}$ if $\dot{h} \in \omega^{\omega}$, then $\dot{h}<\check{h}$
or, if \dot{h} is a code for a dense G_{δ} in \mathbb{R}, then there can be an r such that $f \Vdash r \in\lceil\dot{h}\rceil$

$\Vdash \mathbb{P}(\mathcal{F})$ is ω^{ω}-bounding and preserves category

$\Vdash \mathbb{P}(\mathcal{F})$ is ω^{ω}-bounding and preserves category

It's a simple matter to force an $I \subset \mathbb{N}$ so that $\lim \sup \left|\iota^{n} \backslash I\right|$ is infinite, and $I \supset^{*} \operatorname{dom}(f)$ for all $f \in \mathcal{F}$.

$\Vdash \mathbb{P}(\mathcal{F})$ is ω^{ω}-bounding and preserves category

It's a simple matter to force an $I \subset \mathbb{N}$ so that $\lim \sup \left|\iota^{n} \backslash I\right|$ is infinite, and $I \supset^{*} \operatorname{dom}(f)$ for all $f \in \mathcal{F}$. Thus, if $\mathcal{F}_{G} \subset \mathcal{F}$ is $\mathbb{P}(\mathcal{F})$-generic, $p_{\mathcal{F}}=\bigcup\left\{f \upharpoonright I: f \in \mathcal{F}_{G}\right\}$ is a special member of \mathbb{P}.

$\Vdash \mathbb{P}(\mathcal{F})$ is ω^{ω}-bounding and preserves category

It's a simple matter to force an $I \subset \mathbb{N}$ so that $\lim \sup \left|\iota^{n} \backslash I\right|$ is infinite, and $I \supset^{*} \operatorname{dom}(f)$ for all $f \in \mathcal{F}$. Thus, if $\mathcal{F}_{G} \subset \mathcal{F}$ is $\mathbb{P}(\mathcal{F})$-generic, $p_{\mathcal{F}}=\bigcup\left\{f \upharpoonright I: f \in \mathcal{F}_{G}\right\}$ is a special member of \mathbb{P}.

How special? For any prescribed family \mathcal{D} of $<\aleph_{2}$ dense open subsets of $\mathbb{P}, p_{\mathcal{F}} \in \bigcap \mathcal{D}$ (and whatever else we can make it force)

$\Vdash \mathbb{P}(\mathcal{F})$ is ω^{ω}-bounding and preserves category

It's a simple matter to force an $I \subset \mathbb{N}$ so that $\lim \sup \left|\iota^{n} \backslash I\right|$ is infinite, and $I \supset^{*} \operatorname{dom}(f)$ for all $f \in \mathcal{F}$. Thus, if $\mathcal{F}_{G} \subset \mathcal{F}$ is $\mathbb{P}(\mathcal{F})$-generic, $p_{\mathcal{F}}=\bigcup\left\{f \upharpoonright I: f \in \mathcal{F}_{G}\right\}$ is a special member of \mathbb{P}.

How special? For any prescribed family \mathcal{D} of $<\aleph_{2}$ dense open subsets of $\mathbb{P}, p_{\mathcal{F}} \in \bigcap \mathcal{D}$ (and whatever else we can make it force)

Thus \mathbb{P} is \aleph_{2}-distributive (preserves $\operatorname{MA}\left(\omega_{1}\right)$ and cardinals).

$\Vdash \mathbb{P}(\mathcal{F})$ is ω^{ω}-bounding and preserves category

It's a simple matter to force an $I \subset \mathbb{N}$ so that $\lim \sup \left|\iota^{n} \backslash I\right|$ is infinite, and $I \supset^{*} \operatorname{dom}(f)$ for all $f \in \mathcal{F}$. Thus, if $\mathcal{F}_{G} \subset \mathcal{F}$ is $\mathbb{P}(\mathcal{F})$-generic, $p_{\mathcal{F}}=\bigcup\left\{f \upharpoonright I: f \in \mathcal{F}_{G}\right\}$ is a special member of \mathbb{P}.

How special? For any prescribed family \mathcal{D} of $<\aleph_{2}$ dense open subsets of $\mathbb{P}, p_{\mathcal{F}} \in \bigcap \mathcal{D}$ (and whatever else we can make it force)

Thus \mathbb{P} is \aleph_{2}-distributive (preserves $\mathrm{MA}\left(\omega_{1}\right)$ and cardinals).
This shows that MA $+\neg \mathrm{CH}$ does not imply all automorphisms are trivial.

$\Vdash \mathbb{P}(\mathcal{F})$ is ω^{ω}-bounding and preserves category

It's a simple matter to force an $I \subset \mathbb{N}$ so that $\lim \sup \left|\iota^{n} \backslash I\right|$ is infinite, and $I \supset^{*} \operatorname{dom}(f)$ for all $f \in \mathcal{F}$. Thus, if $\mathcal{F}_{G} \subset \mathcal{F}$ is $\mathbb{P}(\mathcal{F})$-generic, $p_{\mathcal{F}}=\bigcup\left\{f \upharpoonright l: f \in \mathcal{F}_{G}\right\}$ is a special member of \mathbb{P}.

How special? For any prescribed family \mathcal{D} of $<\aleph_{2}$ dense open subsets of $\mathbb{P}, p_{\mathcal{F}} \in \bigcap \mathcal{D}$ (and whatever else we can make it force)

Thus \mathbb{P} is \aleph_{2}-distributive (preserves $\mathrm{MA}\left(\omega_{1}\right)$ and cardinals).
This shows that MA $+\neg \mathrm{CH}$ does not imply all automorphisms are trivial.

Question 2 Does MA $+\neg \mathrm{CH}$ imply $\mathcal{P}(\mathbb{N})$ is not \mathfrak{c}-universal?

sample preservation of PFA theorems

sample preservation of PFA theorems

$\mathbb{P}=P_{2}$ preserves that there are no $\left(\omega_{1}, \omega_{2}\right)$-gaps.

sample preservation of PFA theorems

$\mathbb{P}=P_{2}$ preserves that there are no $\left(\omega_{1}, \omega_{2}\right)$-gaps.
but it adds an $\left(\omega_{2}, \omega_{2}\right)$-gap

sample preservation of PFA theorems

$\mathbb{P}=P_{2}$ preserves that there are no $\left(\omega_{1}, \omega_{2}\right)$-gaps.
Let $\left\{\dot{c}_{\alpha}: \alpha \in \omega_{1}\right\}$ and $\left\{\dot{d}_{\beta}: \beta \in \omega_{2}\right\}$ be the names

sample preservation of PFA theorems

$\mathbb{P}=P_{2}$ preserves that there are no $\left(\omega_{1}, \omega_{2}\right)$-gaps.
Let $\left\{\dot{c}_{\alpha}: \alpha \in \omega_{1}\right\}$ and $\left\{\dot{d}_{\beta}: \beta \in \omega_{2}\right\}$ be the names
We can assume there is $f_{0} \in \mathcal{F}$ such that f_{0} forces a value c_{α} on \dot{c}_{α} for all $\alpha \in \omega_{1}$.

sample preservation of PFA theorems

$\mathbb{P}=P_{2}$ preserves that there are no $\left(\omega_{1}, \omega_{2}\right)$-gaps.
Let $\left\{\dot{c}_{\alpha}: \alpha \in \omega_{1}\right\}$ and $\left\{\dot{d}_{\beta}: \beta \in \omega_{2}\right\}$ be the names
We can assume there is $f_{0} \in \mathcal{F}$ such that f_{0} forces a value c_{α} on \dot{c}_{α} for all $\alpha \in \omega_{1}$.

Pass to the extension $V[H]$ and note that $\left\{c_{\alpha}: \alpha \in \omega_{1}\right\}$ and $\left\{d_{\beta}: \beta \in \lambda=\check{\omega_{2}}\right\}$ is a gap (where $d_{\beta}=\operatorname{val}_{\mathcal{F}} \dot{d}_{\beta}$).

sample preservation of PFA theorems

$\mathbb{P}=P_{2}$ preserves that there are no $\left(\omega_{1}, \omega_{2}\right)$-gaps.
Let $\left\{\dot{c}_{\alpha}: \alpha \in \omega_{1}\right\}$ and $\left\{\dot{d}_{\beta}: \beta \in \omega_{2}\right\}$ be the names
We can assume there is $f_{0} \in \mathcal{F}$ such that f_{0} forces a value c_{α} on \dot{c}_{α} for all $\alpha \in \omega_{1}$.

Pass to the extension $V[H]$ and note that $\left\{c_{\alpha}: \alpha \in \omega_{1}\right\}$ and $\left\{d_{\beta}: \beta \in \lambda=\check{\omega}_{2}\right\}$ is a gap (where $d_{\beta}=\operatorname{val}_{\mathcal{F}} \dot{d}_{\beta}$).

As we know, there is a proper poset Q which will freeze this gap.

sample preservation of PFA theorems

$\mathbb{P}=P_{2}$ preserves that there are no $\left(\omega_{1}, \omega_{2}\right)$-gaps.
Let $\left\{\dot{c}_{\alpha}: \alpha \in \omega_{1}\right\}$ and $\left\{\dot{d}_{\beta}: \beta \in \omega_{2}\right\}$ be the names
We can assume there is $f_{0} \in \mathcal{F}$ such that f_{0} forces a value c_{α} on \dot{c}_{α} for all $\alpha \in \omega_{1}$.

Pass to the extension $V[H]$ and note that $\left\{c_{\alpha}: \alpha \in \omega_{1}\right\}$ and $\left\{d_{\beta}: \beta \in \lambda=\check{\omega}_{2}\right\}$ is a gap (where $d_{\beta}=\operatorname{val}_{\mathcal{F}} \dot{d}_{\beta}$).

As we know, there is a proper poset Q which will freeze this gap. Meeting ω_{1} many dense sets of ${ }^{<\omega_{1}} 2 * \mathbb{P} * Q$ will choose the \mathcal{F} and produce a frozen gap: $\left\{\boldsymbol{c}_{\alpha}, \boldsymbol{d}_{\beta}: \alpha, \beta \in \omega_{1} \times \lambda\right\}$.

sample preservation of PFA theorems

$\mathbb{P}=P_{2}$ preserves that there are no $\left(\omega_{1}, \omega_{2}\right)$-gaps.
Let $\left\{\dot{c}_{\alpha}: \alpha \in \omega_{1}\right\}$ and $\left\{\dot{d}_{\beta}: \beta \in \omega_{2}\right\}$ be the names
We can assume there is $f_{0} \in \mathcal{F}$ such that f_{0} forces a value c_{α} on \dot{c}_{α} for all $\alpha \in \omega_{1}$.

Pass to the extension $V[H]$ and note that $\left\{c_{\alpha}: \alpha \in \omega_{1}\right\}$ and $\left\{d_{\beta}: \beta \in \lambda=\check{\omega}_{2}\right\}$ is a gap (where $d_{\beta}=\operatorname{val}_{\mathcal{F}} \dot{d}_{\beta}$).

As we know, there is a proper poset Q which will freeze this gap. Meeting ω_{1} many dense sets of ${ }^{<\omega_{1}} 2 * \mathbb{P} * Q$ will choose the \mathcal{F} and produce a frozen gap: $\left\{c_{\alpha}, d_{\beta}: \alpha, \beta \in \omega_{1} \times \lambda\right\}$. So IF there was a $p_{\mathcal{F}}$ for that collection \mathcal{F}, then we have that it forces there is no \dot{d}_{λ}. But Q might force that $\mathbb{P}(\mathcal{F})$ is not proper.

Fundamental local Lemma for $\mathbb{P}(\mathcal{F})$

Thus, the method requires us to work in the model we get after forcing with $\mathbb{P}(\mathcal{F})$.

Fundamental local Lemma for $\mathbb{P}(\mathcal{F})$

Thus, the method requires us to work in the model we get after forcing with $\mathbb{P}(\mathcal{F})$. e.g. Let \mathcal{I} be a P -ideal.

Fundamental local Lemma for $\mathbb{P}(\mathcal{F})$

Thus, the method requires us to work in the model we get after forcing with $\mathbb{P}(\mathcal{F})$. e.g. Let \mathcal{I} be a P-ideal.

For each $\mathbb{P}(\mathcal{F})$-name $\dot{h} \in \mathbb{N}^{\mathbb{N}}$ and gap $\mathcal{I} \perp \mathcal{J}$

Fundamental local Lemma for $\mathbb{P}(\mathcal{F})$

Thus, the method requires us to work in the model we get after forcing with $\mathbb{P}(\mathcal{F})$. e.g. Let \mathcal{I} be a P -ideal.

For each $\mathbb{P}(\mathcal{F})$-name $\dot{h} \in \mathbb{N}^{\mathbb{N}}$ and gap $\mathcal{I} \perp \mathcal{J}$ there are $\left\{n_{k}\right\} \nearrow, I, J \in \mathcal{I} \times \mathcal{J}$ and $f \in \mathcal{F}$ such that

Fundamental local Lemma for $\mathbb{P}(\mathcal{F})$

Thus, the method requires us to work in the model we get after forcing with $\mathbb{P}(\mathcal{F})$. e.g. Let \mathcal{I} be a P -ideal.

For each $\mathbb{P}(\mathcal{F})$-name $\dot{h} \in \mathbb{N}^{\mathbb{N}}$ and gap $\mathcal{I} \perp \mathcal{J}$ there are $\left\{n_{k}\right\} \quad \nearrow, I, J \in \mathcal{I} \times \mathcal{J}$ and $f \in \mathcal{F}$ such that either

Fundamental local Lemma for $\mathbb{P}(\mathcal{F})$

Thus, the method requires us to work in the model we get after forcing with $\mathbb{P}(\mathcal{F})$. e.g. Let \mathcal{I} be a P -ideal.

For each $\mathbb{P}(\mathcal{F})$-name $\dot{h} \in \mathbb{N}^{\mathbb{N}}$ and gap $\mathcal{I} \perp \mathcal{J}$ there are $\left\{n_{k}\right\} \nearrow, I, J \in \mathcal{I} \times \mathcal{J}$ and $f \in \mathcal{F}$ such that either

1. $f \Vdash_{\mathbb{P}(\mathcal{F})} \dot{h} \upharpoonright \bigcup\left\{\left[n_{k}, n_{k+1}\right) \cap(I \cup J): k \in K\right\} \notin V$ for each infinite $K \subset \omega$ (since $2^{n_{k}} \ll n_{k+1}$) or

Fundamental local Lemma for $\mathbb{P}(\mathcal{F})$

Thus, the method requires us to work in the model we get after forcing with $\mathbb{P}(\mathcal{F})$. e.g. Let \mathcal{I} be a P-ideal.

For each $\mathbb{P}(\mathcal{F})$-name $\dot{h} \in \mathbb{N}^{\mathbb{N}}$ and gap $\mathcal{I} \perp \mathcal{J}$ there are $\left\{n_{k}\right\} \nearrow, I, J \in \mathcal{I} \times \mathcal{J}$ and $f \in \mathcal{F}$ such that either

1. $f \Vdash_{\mathbb{P}(\mathcal{F})} \dot{h} \upharpoonright \bigcup\left\{\left[n_{k}, n_{k+1}\right) \cap(I \cup J): k \in K\right\} \notin V$ for each infinite $K \subset \omega\left(\right.$ since $\left.2^{n_{k}} \ll n_{k+1}\right)$ or
2. for each $i \in\left[n_{k}, n_{k+1}\right)$ and each $g<f$ such that g forces a value on $\dot{h}(i), f \cup\left(g \upharpoonright\left[n_{k}, n_{k+1}\right)\right)$ also forces a value on $\dot{h}(i)$ (with a single $\emptyset \neq \iota^{m_{k}} \subset\left[n_{k}, n_{k+1}\right) \backslash \operatorname{dom}(f)$)

Fundamental local Lemma for $\mathbb{P}(\mathcal{F})$

Thus, the method requires us to work in the model we get after forcing with $\mathbb{P}(\mathcal{F})$. e.g. Let \mathcal{I} be a P -ideal.

For each $\mathbb{P}(\mathcal{F})$-name $\dot{h} \in \mathbb{N}^{\mathbb{N}}$ and gap $\mathcal{I} \perp \mathcal{J}$ there are $\left\{n_{k}\right\} \nearrow, I, J \in \mathcal{I} \times \mathcal{J}$ and $f \in \mathcal{F}$ such that either

1. $f \Vdash_{\mathbb{P}(\mathcal{F})} \dot{h} \upharpoonright \bigcup\left\{\left[n_{k}, n_{k+1}\right) \cap(I \cup J): k \in K\right\} \notin V$ for each infinite $K \subset \omega\left(\right.$ since $\left.2^{n_{k}} \ll n_{k+1}\right)$ or
2. for each $i \in\left[n_{k}, n_{k+1}\right)$ and each $g<f$ such that g forces a value on $\dot{h}(i), f \cup\left(g \upharpoonright\left[n_{k}, n_{k+1}\right)\right)$ also forces a value on $\dot{h}(i)$ (with a single $\emptyset \neq \iota^{m_{k}} \subset\left[n_{k}, n_{k+1}\right) \backslash \operatorname{dom}(f)$)

Apply to gaps: obviously Case 1 implies that $h^{-1}(0)$ does not split the gap. But similarly with Case 2 because ...

$\left\{c_{\alpha}, d_{\beta}: \alpha \in \omega_{1}, \beta \in \omega_{2}\right\}$ not a gap

otherwise

$\left\{\boldsymbol{c}_{\alpha}, d_{\beta}: \alpha \in \omega_{1}, \beta \in \omega_{2}\right\}$ not a gap

otherwise $Y=\{i:(\exists g<f) g \Vdash \dot{h}(i) \neq 0\}$ is in V and will contain each $J \in \mathcal{J}$,

$\left\{\boldsymbol{c}_{\alpha}, d_{\beta}: \alpha \in \omega_{1}, \beta \in \omega_{2}\right\}$ not a gap

otherwise $Y=\{i:(\exists g<f) g \Vdash \dot{h}(i) \neq 0\}$ is in V and will contain each $J \in \mathcal{J}$, and so meet $/$ for some $I \in \mathcal{I}$.

$$
\left\{\boldsymbol{c}_{\alpha}, d_{\beta}: \alpha \in \omega_{1}, \beta \in \omega_{2}\right\} \text { not a gap }
$$

otherwise $Y=\{i:(\exists g<f) g \Vdash \dot{h}(i) \neq 0\}$ is in V and will contain each $J \in \mathcal{J}$, and so meet I for some $I \in \mathcal{I}$.
Therefore there is an infinite $K \subset \omega$ such that for each $k \in K$ there is an $i_{k} \in Y \cap I \cap\left[n_{k}, n_{k+1}\right)$.

$$
\left\{\boldsymbol{c}_{\alpha}, d_{\beta}: \alpha \in \omega_{1}, \beta \in \omega_{2}\right\} \text { not a gap }
$$

otherwise $Y=\{i:(\exists g<f) g \Vdash \dot{h}(i) \neq 0\}$ is in V and will contain each $J \in \mathcal{J}$, and so meet $/$ for some $I \in \mathcal{I}$.
Therefore there is an infinite $K \subset \omega$ such that for each $k \in K$ there is an $i_{k} \in Y \cap I \cap\left[n_{k}, n_{k+1}\right)$. For each $k \in K$, choose $f \subset g_{k} \Vdash \dot{h}\left(i_{k}\right) \neq 0$ and set $\bar{f}=f \cup \bigcup_{k \in K} g_{k} \upharpoonright\left[n_{k}, n_{k+1}\right)$ $(\bar{f} \in \mathbb{P}$ by simply shrinking $K)$.

$$
\left\{\boldsymbol{c}_{\alpha}, d_{\beta}: \alpha \in \omega_{1}, \beta \in \omega_{2}\right\} \text { not a gap }
$$

otherwise $Y=\{i:(\exists g<f) g \Vdash \dot{h}(i) \neq 0\}$ is in V and will contain each $J \in \mathcal{J}$, and so meet $/$ for some $I \in \mathcal{I}$.
Therefore there is an infinite $K \subset \omega$ such that for each $k \in K$ there is an $i_{k} \in Y \cap I \cap\left[n_{k}, n_{k+1}\right)$. For each $k \in K$, choose $f \subset g_{k} \Vdash \dot{h}\left(i_{k}\right) \neq 0$ and set $\bar{f}=f \cup \bigcup_{k \in K} g_{k} \upharpoonright\left[n_{k}, n_{k+1}\right)$ $(\bar{f} \in \mathbb{P}$ by simply shrinking $K)$.

Thus! after forcing with $\mathbb{P}(\mathcal{F})$, we then select proper poset Q to freeze the gap,

$$
\left\{\boldsymbol{c}_{\alpha}, d_{\beta}: \alpha \in \omega_{1}, \beta \in \omega_{2}\right\} \text { not a gap }
$$

otherwise $Y=\{i:(\exists g<f) g \Vdash \dot{h}(i) \neq 0\}$ is in V and will contain each $J \in \mathcal{J}$, and so meet $/$ for some $I \in \mathcal{I}$.
Therefore there is an infinite $K \subset \omega$ such that for each $k \in K$ there is an $i_{k} \in Y \cap I \cap\left[n_{k}, n_{k+1}\right)$. For each $k \in K$, choose $f \subset g_{k} \Vdash \dot{h}\left(i_{k}\right) \neq 0$ and set $\bar{f}=f \cup \bigcup_{k \in K} g_{k} \upharpoonright\left[n_{k}, n_{k+1}\right)$
$(\bar{f} \in \mathbb{P}$ by simply shrinking $K)$.
Thus! after forcing with $\mathbb{P}(\mathcal{F})$, we then select proper poset Q to freeze the gap, then force with the nice σ-centered poset to get $p_{\mathcal{F}}$ which forces that $\left\{c_{\alpha}: \alpha \in \omega_{1}\right\}$ and $\left\{d_{\beta}: \beta \in \lambda\right\}$ is a gap (and so \dot{d}_{λ} can't exist).

What Steprans did in $V[H]$

What Steprans did in $V[H]$

For the remainder, assume that Φ is the valuation by \mathcal{F} of a \mathbb{P}-name of a lifting of an automorphism on $\mathcal{P}(\mathbb{N})$.

What Steprans did in $V[H]$

For the remainder, assume that Φ is the valuation by \mathcal{F} of a \mathbb{P}-name of a lifting of an automorphism on $\mathcal{P}(\mathbb{N})$. For each $b \in \mathcal{P}(\mathbb{N})$, we have arranged that $\operatorname{val}_{\mathcal{F}}(\Phi) \upharpoonright \mathcal{P}(b)$ is trivial iff some $f \Vdash_{\mathbb{P}} \Phi \upharpoonright \mathcal{P}(b)$ is trivial.

What Steprans did in $V[H]$

For the remainder, assume that Φ is the valuation by \mathcal{F} of a \mathbb{P}-name of a lifting of an automorphism on $\mathcal{P}(\mathbb{N})$. For each $b \in \mathcal{P}(\mathbb{N})$, we have arranged that $v a l_{\mathcal{F}}(\Phi) \upharpoonright \mathcal{P}(b)$ is trivial iff some $f \Vdash_{\mathbb{P}} \Phi \mid \mathcal{P}(b)$ is trivial.

Pass to the extension by $\mathbb{P}(\mathcal{F})$. We only have that Φ is defined on $V \cap \mathcal{P}(\mathbb{N})$.

What Steprans did in $V[H]$

For the remainder, assume that Φ is the valuation by \mathcal{F} of a \mathbb{P}-name of a lifting of an automorphism on $\mathcal{P}(\mathbb{N})$. For each $b \in \mathcal{P}(\mathbb{N})$, we have arranged that $v a l_{\mathcal{F}}(\Phi) \upharpoonright \mathcal{P}(b)$ is trivial iff some $f \Vdash_{\mathbb{P}} \Phi \mid \mathcal{P}(b)$ is trivial.

Pass to the extension by $\mathbb{P}(\mathcal{F})$. We only have that Φ is defined on $V \cap \mathcal{P}(\mathbb{N})$. But this set of reals is not meager and the ω^{ω}-bounding property ensures that one can still attempt to build $\mathcal{A}=\left\{a_{\alpha}, x_{\alpha}: \alpha \in \omega_{1}\right\} \subset V \cap \mathcal{P}(\mathbb{N})$ so that forcing with $Q_{\mathcal{A}}$ will introduce X so that $\Phi(X)$ would have to split the gap $\left\{\Phi\left(X_{\alpha}\right), \Phi\left(a_{\alpha} \backslash x_{\alpha}\right): \alpha \in \omega_{1}\right\}$, which we can now freeze.

What Steprans did in $V[H]$

For the remainder, assume that Φ is the valuation by \mathcal{F} of a \mathbb{P}-name of a lifting of an automorphism on $\mathcal{P}(\mathbb{N})$. For each $b \in \mathcal{P}(\mathbb{N})$, we have arranged that $v a l_{\mathcal{F}}(\Phi) \upharpoonright \mathcal{P}(b)$ is trivial iff some $f \Vdash_{\mathbb{P}} \Phi \mid \mathcal{P}(b)$ is trivial.

Pass to the extension by $\mathbb{P}(\mathcal{F})$. We only have that Φ is defined on $V \cap \mathcal{P}(\mathbb{N})$. But this set of reals is not meager and the ω^{ω}-bounding property ensures that one can still attempt to build $\mathcal{A}=\left\{a_{\alpha}, x_{\alpha}: \alpha \in \omega_{1}\right\} \subset V \cap \mathcal{P}(\mathbb{N})$ so that forcing with $Q_{\mathcal{A}}$ will introduce X so that $\Phi(X)$ would have to split the gap $\left\{\Phi\left(x_{\alpha}\right), \Phi\left(a_{\alpha} \backslash x_{\alpha}\right): \alpha \in \omega_{1}\right\}$, which we can now freeze.

Corollary: Since we fail, the ideal of sets on which $\phi \upharpoonright V$ is σ-Borel is ccc over fin holds in the extension by $\mathbb{P}(\mathcal{F})$,
so what! $P_{2}(\mathcal{F})$ does force $\Phi \upharpoonright V$ to be trivial

so what! $P_{2}(\mathcal{F})$ does force $\Phi \upharpoonright V$ to be trivial

Let G be $\mathbb{P}(\mathcal{F})$-generic.
local Lemma on steroids Assume that $b \in V \cap \mathcal{P}(\mathbb{N})$ is such that $\Phi \upharpoonright\left[V \cap[b]^{\omega}\right]$ has a σ-Borel lifting in $V[G]$. Then, in V, there is an $f \in \mathcal{F}$ and an increasing sequence $\left\{n_{k}: k \in \omega\right\} \subset \omega$ such that Φ is trivial on each $a \in[b]^{\omega}$ for which there is an $g \in \mathcal{F}$, such that $a \subset \bigcup\left\{\left[n_{k}, n_{k+1}\right):\left[n_{k}, n_{k+1}\right) \subset \operatorname{dom}(g)\right\}$.

so what! $P_{2}(\mathcal{F})$ does force $\Phi \upharpoonright V$ to be trivial

Let G be $\mathbb{P}(\mathcal{F})$-generic.
local Lemma on steroids Assume that $b \in V \cap \mathcal{P}(\mathbb{N})$ is such that $\Phi \upharpoonright\left[V \cap[b]^{\omega}\right]$ has a σ-Borel lifting in $V[G]$. Then, in V, there is an $f \in \mathcal{F}$ and an increasing sequence $\left\{n_{k}: k \in \omega\right\} \subset \omega$ such that Φ is trivial on each $a \in[b]^{\omega}$ for which there is an $g \in \mathcal{F}$, such that $a \subset \bigcup\left\{\left[n_{k}, n_{k+1}\right):\left[n_{k}, n_{k+1}\right) \subset \operatorname{dom}(g)\right\}$.

Pulling this back and up to the generic extension by \mathbb{P}, this describes a dense $P_{\omega_{2}}$-ideal, \mathfrak{J}, contained in $\operatorname{triv}(\Phi)$.

so what! $P_{2}(\mathcal{F})$ does force $\Phi \upharpoonright V$ to be trivial

Let G be $\mathbb{P}(\mathcal{F})$-generic.
local Lemma on steroids Assume that $b \in V \cap \mathcal{P}(\mathbb{N})$ is such that $\Phi \upharpoonright\left[V \cap[b]^{\omega}\right]$ has a σ-Borel lifting in $V[G]$. Then, in V, there is an $f \in \mathcal{F}$ and an increasing sequence $\left\{n_{k}: k \in \omega\right\} \subset \omega$ such that Φ is trivial on each $a \in[b]^{\omega}$ for which there is an $g \in \mathcal{F}$, such that $a \subset \bigcup\left\{\left[n_{k}, n_{k+1}\right):\left[n_{k}, n_{k+1}\right) \subset \operatorname{dom}(g)\right\}$.

Pulling this back and up to the generic extension by \mathbb{P}, this describes a dense $P_{\omega_{2}}$-ideal, \mathfrak{J}, contained in $\operatorname{triv}(\Phi)$.

But still a lot can happen in the large complement. Remember we have the generic ultrafilter x, which induces an ultrafilter y by the finite-to-one map $\psi\left(\left[n_{k}, n_{k+1}\right)\right)=k$, and so the behavior of Φ on the large set $y-\lim \left\{\left[n_{k}, n_{k+1}\right): k \in \omega\right\}$ is still unknown, and this is where we expect all the action to be.

we work in $V[H]$ and investigate $\Vdash_{\mathbb{P}(\mathcal{F})}$

we work in $V[H]$ and investigate $\Vdash_{\mathbb{P}(\mathcal{F})}$

But we have gained a (surpising) lot: For each $I \in \operatorname{triv}(\Phi)$, let h_{l} denote the function on I inducing $\Phi \upharpoonright \mathcal{P}(I)$.

we work in $V[H]$ and investigate $\Vdash_{\mathbb{P}(\mathcal{F})}$

But we have gained a (surpising) lot: For each $I \in \operatorname{triv}(\Phi)$, let h_{l} denote the function on I inducing $\Phi \upharpoonright \mathcal{P}(I)$.

Theorem: There is a $\mathbb{P}(\mathcal{F})$-name $\dot{h} \in \mathbb{N}^{\mathbb{N}}$ which is forced to mod finite contain h_{l} for all $I \in \operatorname{triv}(\Phi)$.

we work in $V[H]$ and investigate $\Vdash_{\mathbb{P}(\mathcal{F})}$

But we have gained a (surpising) lot: For each $I \in \operatorname{triv}(\Phi)$, let h_{I} denote the function on I inducing $\Phi \upharpoonright \mathcal{P}(I)$.

Theorem: There is a $\mathbb{P}(\mathcal{F})$-name $\dot{h} \in \mathbb{N}^{\mathbb{N}}$ which is forced to mod finite contain h_{l} for all $I \in \operatorname{triv}(\Phi)$.

So our challenge has been reduced to understanding when \dot{h} exists. (It's valuation does not exist in $V[H]$)

we work in $V[H]$ and investigate $\Vdash_{\mathbb{P}(\mathcal{F})}$

But we have gained a (surpising) lot: For each $I \in \operatorname{triv}(\Phi)$, let h_{l} denote the function on / inducing $\Phi \upharpoonright \mathcal{P}(I)$.

Theorem: There is a $\mathbb{P}(\mathcal{F})$-name $\dot{h} \in \mathbb{N}^{\mathbb{N}}$ which is forced to mod finite contain h_{l} for all $I \in \operatorname{triv}(\Phi)$.

So our challenge has been reduced to understanding when \dot{h} exists. (lt's valuation does not exist in $V[H]$)

The proof follows our pattern: We have our dense $P_{\omega_{2}}$-ideal of functions. If forcing with $\mathbb{P}(\mathcal{F})$ adds no extension, then there is a proper poset freezing this fact. Meeting ω_{1} many dense sets pulls back to an \aleph_{1}-sized subfamily of our dense $P_{\omega_{2}}$-ideal which can not have a common extension - contradicting that it's a $P_{\omega_{2}}$-ideal.

making sense of \grave{h} from local Lemma

For each k we are still assuming there is a single m_{k} such $S_{k}=\iota^{m_{k}} \backslash \operatorname{dom}(f) \subset\left[n_{k}, n_{k+1}\right)$ is non-empty. and that the fundamental lemma ensured that
the values of $\dot{h} \upharpoonright\left[n_{k}, n_{k+1}\right)$ are just determined by functions $s: S_{k} \mapsto S_{k}$
so we can also assume that $f \Vdash \dot{h}\left(\left[0, n_{k}\right]\right) \subset n_{k+1}$ and that for each $j<n_{k}$ and each $s: n_{k+1} \mapsto n_{k+1}$, such that $g=f \sqcup s<f$, if there is no $i \in a_{g} \cap n_{k+1}$ such that $\dot{h}(i)=j$, then this is true for all $\bar{f}<f \sqcup s$.

We can now complete the 2-to-1 image problem: obtain $A_{1} \oplus_{x_{2}}^{x_{1}} B_{2} \not \approx \mathbb{N}^{*}$ with propellers $A_{i} \oplus_{x_{i}} B_{i}$

a 2-to-1 image which is not \mathbb{N}^{*}

For this we force with $\mathbb{P}=P_{2,2}$ and assume that we have $A_{1} \oplus_{X_{2}}^{x_{1}} B_{2} \quad \approx_{\varphi} \mathbb{N}^{*}$. This implies the existence of a pair of homomorphisms, which we combine and call Φ where $\Phi_{1}(X)^{*}=\varphi^{-1}\left(X^{*} \cap A_{1}\right)$ and $\Phi_{2}(X)^{*}=\varphi^{-1}\left(X^{*} \cap B_{2}\right)$.
our \dot{h} will induce Φ on all X such that $X^{*} \subset A_{1} \cup B_{2}$. Let \dot{z} denote the \mathbb{P}-name of the ultrafilter on $\mathbb{N}\left(\varphi(z)=\left\{x_{1}, x_{2}\right\}\right)$ to which each of x_{1} and x_{2} are sent (i.e. $\Phi(X) \notin \dot{z}$ for all X with $\left.X^{*} \subset A_{1} \cup B_{2}\right)$. It follows easily then that for all f and all $X \in x_{1} \cup x_{2}$,
$\left\{j:(\exists g<f, i \in X) i \in a_{g}^{1} \cup b_{g}^{2}\right.$ and $\left.g \Vdash \dot{h}(i)=j\right\}$ is in \dot{z}
as above we can assume that $f \Vdash \dot{h}\left(\left[0, n_{k}\right]\right) \subset n_{k+1}$ and that for each $j<n_{k}$ and each $s: n_{k+1} \mapsto n_{k+1}$, such that $g=f \sqcup s<f$, if there is no $i \in\left(a_{g}^{1} \cup b_{g}^{2}\right) \cap n_{k+1}$ such that $\dot{h}(i)=j$, then this is true for all $\bar{f}<f \sqcup s$.

We can strengthen f and have $\bigcup_{k}\left[n_{3 k+1}, n_{3 k+3}\right) \subset \operatorname{dom}(f)$.
Recall $E=\bigcup_{j} \iota^{2 j} \in x_{1} \backslash x_{2}$: choose any $\bar{f}<f$ such that \bar{f} force a value on $\Phi\left(a_{f}^{1} \cup b_{f}^{2}\right)($ not in $z)$.

Let $Y_{1}=\left\{j:(\exists g<\bar{f}) \quad\left(\exists i \in a_{g}^{1}\right) g \Vdash \dot{h}(i)=j\right\}$ and
$Y_{2}=\left\{j:(\exists g<\bar{f})\left(\exists i \in b_{g}^{2}\right) \quad g \Vdash \dot{h}(i)=j\right\}$ (both are in $\left.\dot{z}\right)$
fix any $j \in Y_{1} \cap Y_{2} \backslash \Phi\left(a_{f}^{1} \cup b_{f}^{2}\right)$, and $g_{1}, g_{2}<f i_{1}, i_{2}$ witnessing $j \in Y_{1} \cap Y_{2}$. Let $j \in\left[n_{k}, n_{k+1}\right)$ and (wlog) $\iota^{m_{k}} \subset \mathbb{N} \backslash E$.

By our construction, since there is some i with $i \in a_{g}^{1}$ such that $g=g_{1} \cup f \Vdash \dot{h}(i)=j$, there must be an $i \in\left[n_{k}, n_{k+2}\right) \cap a_{f}^{1}$ such that $g_{1} \cup f \Vdash \dot{h}(i)=j$. However this contradicts that $g_{1} \Vdash j \notin \Phi\left(a_{f}^{1} \cup b_{f}^{2}\right)$, and that \bar{f} forces $\dot{h} \supset^{*} h_{\mathrm{a}_{f}^{1}}$.
fix any $j \in Y_{1} \cap Y_{2} \backslash \Phi\left(a_{f}^{1} \cup b_{f}^{2}\right)$, and $g_{1}, g_{2}<f i_{1}, i_{2}$ witnessing $j \in Y_{1} \cap Y_{2}$. Let $j \in\left[n_{k}, n_{k+1}\right)$ and (wlog) $\iota^{m_{k}} \subset \mathbb{N} \backslash E$.

By our construction, since there is some i with $i \in a_{g}^{1}$ such that $g=g_{1} \cup f \Vdash \dot{h}(i)=j$, there must be an $i \in\left[n_{k}, n_{k+2}\right) \cap a_{f}^{1}$ such that $g_{1} \cup f \Vdash \dot{h}(i)=j$. However this contradicts that $g_{1} \Vdash j \notin \Phi\left(a_{f}^{1} \cup b_{f}^{2}\right)$, and that \bar{f} forces $\dot{h} \supset^{*} h_{\mathrm{a}_{f}^{1}}$.
one of the things that is going on is that things about Φ are forced by \mathbb{P}, while things about \dot{h} are forced by $\mathbb{P}(\mathcal{F})$

the hard work begins

next step was: Theorem $\operatorname{triv}(\Phi)$ is a ccc over fin $P_{\omega_{2}}$-ideal.

the hard work begins

next step was: Theorem $\operatorname{triv}(\Phi)$ is a ccc over fin $P_{\omega_{2}}$-ideal.
but for more control, e.g. there are no 3-points, all automorphisms are trivial. we have only succeeded with P_{1} and P_{0} (and their products).

the hard work begins

next step was: Theorem $\operatorname{triv}(\Phi)$ is a ccc over fin $P_{\omega_{2}}$-ideal.
but for more control, e.g. there are no 3-points, all automorphisms are trivial. we have only succeeded with P_{1} and P_{0} (and their products).

Key Lemma The condition f and sequence $\left\{n_{k}\right\} \nearrow$ can be chosen so that there is a partial function $\psi: \mathbb{N} \mapsto \mathbb{N} \backslash \operatorname{dom}(f)$ so that for all $i \notin \operatorname{dom}(f), \psi^{-1}(i) \subset\left[n_{k}, n_{k+1}\right)$ for some k, and for all $g<f, g$ forces a value on $\dot{h} \upharpoonright \psi^{-1}(i)$ iff $f \cup\{(i, g(i))\}$ forces this value.

the hard work begins

next step was: Theorem $\operatorname{triv}(\Phi)$ is a ccc over fin $P_{\omega_{2}}$-ideal.
but for more control, e.g. there are no 3-points, all automorphisms are trivial. we have only succeeded with P_{1} and P_{0} (and their products).

Key Lemma The condition f and sequence $\left\{n_{k}\right\} \nearrow$ can be chosen so that there is a partial function $\psi: \mathbb{N} \mapsto \mathbb{N} \backslash \operatorname{dom}(f)$ so that for all $i \notin \operatorname{dom}(f), \psi^{-1}(i) \subset\left[n_{k}, n_{k+1}\right)$ for some k, and for all $g<f, g$ forces a value on $\dot{h} \upharpoonright \psi^{-1}(i)$ iff $f \cup\{(i, g(i))\}$ forces this value.

Let L be the domain of ψ. It follows that if Φ is not trivial, then $L \notin \operatorname{triv}(\Phi)$ (but we skip).

so all automorphisms are trivial

Choose just *any* total function g extending f; but for definiteness assume that $g(i)=0$ for all $i \notin \operatorname{dom}(f)$.
This defines a ground model function h as an interpretation of \dot{h}, i.e. $h(\ell)=j$ if $\psi(\ell)=i$ and $f \cup\{(i, 0)\} \Vdash \dot{h}(\ell)=j$. We know that this function h does not induce Φ, so it is easy to show that there is an infinite set $Y \subset L$ such that $h[Y] \cap F(Y)$ is empty.

It's simple enough to now shrink Y and arrange that $K=\left\{k: Y \cap\left[n_{k}, n_{k+1}\right) \neq \emptyset\right\}$ and $J=\bigcup_{k \in K}\left[n_{k}, n_{k+1}\right)$, are such that $f \cup g \upharpoonright J$ is a condition. This condition forces that \dot{h} does not extend h_{J} despite the fact that $J \in \mathfrak{J} \subset \operatorname{triv}(\Phi)$.

a tamer key lemma

a tamer key lemma

We produce f so that $g<f$ decides $\dot{h}(i)$ so long as $i \in \operatorname{dom}(g)$. (assuming $g \Vdash \dot{h} \upharpoonright \operatorname{dom}(g) \in V$)

a tamer key lemma

We produce f so that $g<f$ decides $\dot{h}(i)$ so long as $i \in \operatorname{dom}(g)$. (assuming $g \Vdash \dot{h} \upharpoonright \operatorname{dom}(g) \in V$)

We will recursively choose $f_{j}<f_{j-1}<\cdots f_{0}=f$. Also, let i_{j}^{k} be the minimum element of $\iota^{m_{k}} \backslash \operatorname{dom}\left(f_{j-1}\right)$ (if it exists) and $K_{j}=\left\{k \in K_{j-1}: i_{j}^{k}\right.$ exists $\}$.
We choose $f_{j}<f_{j-1}$ by a length 2^{j+1} induction.

a tamer key lemma

We produce f so that $g<f$ decides $\dot{h}(i)$ so long as $i \in \operatorname{dom}(g)$. (assuming $g \Vdash \dot{h} \upharpoonright \operatorname{dom}(g) \in V$)

We will recursively choose $f_{j}<f_{j-1}<\cdots f_{0}=f$. Also, let i_{j}^{k} be the minimum element of $\iota^{m_{k}} \backslash \operatorname{dom}\left(f_{j-1}\right)$ (if it exists) and $K_{j}=\left\{k \in K_{j-1}: i_{j}^{k}\right.$ exists $\}$.
We choose $f_{j}<f_{j-1}$ by a length 2^{j+1} induction.
For a condition $g \in \mathbb{P}$ and function $\psi \in 2^{j+1}$, define
g^{ψ} by redefining g at all values in $\left\{i_{\ell}^{k}: \ell \leq j, k \in K_{j}\right\}$ so that $g^{\psi}\left(i_{\ell}^{k}\right)=\psi(\ell)$ for all $k \in K_{j}$ (and otherwise agrees with g).

a tamer key lemma

We produce f so that $g<f$ decides $\dot{h}(i)$ so long as $i \in \operatorname{dom}(g)$. (assuming $g \Vdash \dot{h} \upharpoonright \operatorname{dom}(g) \in V$)

We will recursively choose $f_{j}<f_{j-1}<\cdots f_{0}=f$. Also, let i_{j}^{k} be the minimum element of $\iota^{m_{k}} \backslash \operatorname{dom}\left(f_{j-1}\right)$ (if it exists) and $K_{j}=\left\{k \in K_{j-1}: i_{j}^{k}\right.$ exists $\}$.
We choose $f_{j}<f_{j-1}$ by a length 2^{j+1} induction.
For a condition $g \in \mathbb{P}$ and function $\psi \in 2^{j+1}$, define g^{ψ} by redefining g at all values in $\left\{i_{\ell}^{k}: \ell \leq j, k \in K_{j}\right\}$ so that $g^{\psi}\left(i_{\ell}^{k}\right)=\psi(\ell)$ for all $k \in K_{j}$ (and otherwise agrees with g).

By this process it is a simple matter to ensure that f_{j}^{ψ} forces a value on $\dot{h}\left(i_{j}^{k}\right)$ for all $k \in K_{j}$. (by the assumption that f forces that $\dot{h} \upharpoonright\left\{i_{j}^{k}: k \in K_{j}\right\}$ is in $\left.V\right)$.

When this induction is done, we have an increasing sequence $\left\{k_{j}: j \in \omega\right\}$ so that $l_{j}=\left\{i_{\ell}^{k_{j}}: \ell<j\right\}$ was successfully chosen.

When this induction is done, we have an increasing sequence $\left\{k_{j}: j \in \omega\right\}$ so that $I_{j}=\left\{i_{\ell}^{k_{j}}: \ell<j\right\}$ was successfully chosen.

The union $\bigcup_{j} f_{j}$ is a function (but likely not a condition) but we can remove the set $I=\bigcup_{j} I_{j}$ from its domain and let (re-using the letter) $f=\bigcup_{j} f_{j} \upharpoonright \mathbb{N} \backslash I$.

When this induction is done, we have an increasing sequence $\left\{k_{j}: j \in \omega\right\}$ so that $I_{j}=\left\{i_{\ell}^{k_{j}}: \ell<j\right\}$ was successfully chosen.

The union $\bigcup_{j} f_{j}$ is a function (but likely not a condition) but we can remove the set $I=\bigcup_{j} I_{j}$ from its domain and let (re-using the letter) $f=\bigcup_{j} f_{j} \upharpoonright \mathbb{N} \backslash I$.
We repeat the above fusion exactly except this time the definition of i_{j}^{k} is the maximum element of $\iota^{m_{k}} \backslash \operatorname{dom}\left(f_{j-1}\right)$ rather than the minimum.

And again, we finish the fusion, obtaining a larger function f and so that $\iota^{m_{k}} \backslash \operatorname{dom}(f) \subset\left\{i_{0}^{k}, \ldots, i_{j}^{k}\right\}$ for some j (whose value diverges to infinity along some set K).

the new point x is not a 3 point

The construction has arranged that for each k and i_{ℓ}^{k}, and each function $s: S_{k} \mapsto 2$, each of $f \cup s \upharpoonright\left(S_{k} \cap i_{\ell}^{k}+1\right)$ and $f \cup s \upharpoonright\left(S_{k} \backslash i_{\ell}^{k}\right)$ force a value on $\dot{h}(i)$. Since they can't be different values, it follows that the value of $s\left(i_{\ell}^{k}\right)$ is really what is determining $\dot{h}\left(i_{\ell}^{k}\right)$ (and we're done).

the new point x is not a 3 point

The construction has arranged that for each k and i_{ℓ}^{k}, and each function $s: S_{k} \mapsto 2$, each of $f \cup s \upharpoonright\left(S_{k} \cap i_{\ell}^{k}+1\right)$ and $f \cup s \upharpoonright\left(S_{k} \backslash i_{\ell}^{k}\right)$ force a value on $\dot{h}(i)$. Since they can't be different values, it follows that the value of $s\left(i_{\ell}^{k}\right)$ is really what is determining $\dot{h}\left(i_{\ell}^{k}\right)$ (and we're done).

Corollary: x is not a 2-point in A

the new point x is not a 3 point

The construction has arranged that for each k and i_{ℓ}^{k}, and each function $s: S_{k} \mapsto 2$, each of $f \cup s \upharpoonright\left(S_{k} \cap i_{\ell}^{k}+1\right)$ and $f \cup s \upharpoonright\left(S_{k} \backslash i_{\ell}^{k}\right)$ force a value on $\dot{h}(i)$. Since they can't be different values, it follows that the value of $s\left(i_{\ell}^{k}\right)$ is really what is determining $\dot{h}\left(i_{\ell}^{k}\right)$ (and we're done).

Corollary: x is not a 2-point in A
otherwise, \dot{h} can be assumed to mod fin extend a coherent family of maps $h_{g}: a_{g} \mapsto 2\left(i \in a_{g}\right.$ if $\left.g(i)=0\right)$

the new point x is not a 3 point

The construction has arranged that for each k and i_{ℓ}^{k}, and each function $s: S_{k} \mapsto 2$, each of $f \cup s \upharpoonright\left(S_{k} \cap i_{\ell}^{k}+1\right)$ and $f \cup s \upharpoonright\left(S_{k} \backslash i_{\ell}^{k}\right)$ force a value on $\dot{h}(i)$. Since they can't be different values, it follows that the value of $s\left(i_{\ell}^{k}\right)$ is really what is determining $\dot{h}\left(i_{\ell}^{k}\right)$ (and we're done).

Corollary: x is not a 2-point in A
otherwise, \dot{h} can be assumed to mod fin extend a coherent family of maps $h_{g}: a_{g} \mapsto 2\left(i \in a_{g}\right.$ if $\left.g(i)=0\right)$
With our condition f as above and $I=\mathbb{N} \backslash \operatorname{dom}(f)$, we partition $I=I_{0} \cup I_{1}$ by $i \in I_{0}$ iff $f \cup\{(i, 0)\} \Vdash \dot{h}(i)=0$;
by symmetry may assume lim sup $\left|I_{0} \cap S_{k}\right|$ is infinite. Then $f \cup I_{1} \times\{1\}$ forces that \dot{h} is constantly 0 on $A \backslash a_{f}^{*}$

